Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.05127
Cited By
Balancing Privacy and Performance for Private Federated Learning Algorithms
11 April 2023
Xiangjiang Hou
Sarit Khirirat
Mohammad Yaqub
Samuel Horváth
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Balancing Privacy and Performance for Private Federated Learning Algorithms"
5 / 5 papers shown
Title
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
167
0
01 Mar 2023
Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging
Rui Yan
Liangqiong Qu
Qingyue Wei
Shih-Cheng Huang
Liyue Shen
D. Rubin
Lei Xing
Yuyin Zhou
FedML
70
86
0
17 May 2022
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
173
411
0
14 Jul 2021
Federated Learning with Local Differential Privacy: Trade-offs between Privacy, Utility, and Communication
Muah Kim
Onur Gunlu
Rafael F. Schaefer
FedML
101
118
0
09 Feb 2021
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,453
0
23 Jan 2020
1