ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.06258
  4. Cited By
MProtoNet: A Case-Based Interpretable Model for Brain Tumor
  Classification with 3D Multi-parametric Magnetic Resonance Imaging
v1v2 (latest)

MProtoNet: A Case-Based Interpretable Model for Brain Tumor Classification with 3D Multi-parametric Magnetic Resonance Imaging

International Conference on Medical Imaging with Deep Learning (MIDL), 2023
13 April 2023
Yuanyuan Wei
Roger Tam
Xiaoying Tang
    MedIm
ArXiv (abs)PDFHTMLGithub (13★)

Papers citing "MProtoNet: A Case-Based Interpretable Model for Brain Tumor Classification with 3D Multi-parametric Magnetic Resonance Imaging"

7 / 7 papers shown
Title
ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning
ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning
Siyang Song
David Chen
Thomas Statchen
Michael C. Burkhart
Nipun Bhandari
Bashar Ramadan
Brett Beaulieu-Jones
357
3
0
11 Apr 2025
Rashomon Sets for Prototypical-Part Networks: Editing Interpretable Models in Real-TimeComputer Vision and Pattern Recognition (CVPR), 2025
J. Donnelly
Zhicheng Guo
A. Barnett
Hayden McTavish
Chaofan Chen
Cynthia Rudin
360
7
0
03 Mar 2025
Label-free Concept Based Multiple Instance Learning for Gigapixel Histopathology
Label-free Concept Based Multiple Instance Learning for Gigapixel Histopathology
Susu Sun
Leslie Tessier
Frédérique Meeuwsen
Clément Grisi
Dominique van Midden
G. Litjens
Christian F. Baumgartner
284
5
0
06 Jan 2025
Self-eXplainable AI for Medical Image Analysis: A Survey and New
  Outlooks
Self-eXplainable AI for Medical Image Analysis: A Survey and New Outlooks
Junlin Hou
Sicen Liu
Yequan Bie
Hongmei Wang
Andong Tan
Luyang Luo
Hao Chen
XAI
292
24
0
03 Oct 2024
ProtoAL: Interpretable Deep Active Learning with prototypes for medical
  imaging
ProtoAL: Interpretable Deep Active Learning with prototypes for medical imaging
Iury B. de A. Santos
André C.P.L.F. de Carvalho
MedIm
132
2
0
06 Apr 2024
Enhancing Interpretability of Vertebrae Fracture Grading using
  Human-interpretable Prototypes
Enhancing Interpretability of Vertebrae Fracture Grading using Human-interpretable PrototypesMachine Learning for Biomedical Imaging (MLBI), 2024
Poulami Sinhamahapatra
Antonio Terpin
Anjany Sekuboyina
M. Husseini
D. Schinz
Nicolas Lenhart
Bjoern Menze
Jan Kirschke
Karsten Roscher
Stephan Guennemann
223
2
0
03 Apr 2024
PIPNet3D: Interpretable Detection of Alzheimer in MRI Scans
PIPNet3D: Interpretable Detection of Alzheimer in MRI Scans
Lisa Anita De Santi
Jorg Schlotterer
Michael Scheschenja
Joel Wessendorf
Meike Nauta
Vincenzo Positano
Christin Seifert
MedIm
139
4
0
27 Mar 2024
1