Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.09402
Cited By
MixPro: Simple yet Effective Data Augmentation for Prompt-based Learning
19 April 2023
Bohan Li
Longxu Dou
Yutai Hou
Yunlong Feng
Honglin Mu
Qingfu Zhu
Qinghua Sun
Wanxiang Che
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MixPro: Simple yet Effective Data Augmentation for Prompt-based Learning"
8 / 8 papers shown
Title
PromptDA: Label-guided Data Augmentation for Prompt-based Few-shot Learners
Canyu Chen
Kai Shu
VLM
18
8
0
18 May 2022
Novelty Controlled Paraphrase Generation with Retrieval Augmented Conditional Prompt Tuning
Jishnu Ray Chowdhury
Yong Zhuang
Shuyi Wang
123
39
0
01 Feb 2022
Data Augmentation Approaches in Natural Language Processing: A Survey
Bohan Li
Yutai Hou
Wanxiang Che
113
269
0
05 Oct 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
275
3,784
0
18 Apr 2021
WARP: Word-level Adversarial ReProgramming
Karen Hambardzumyan
Hrant Khachatrian
Jonathan May
AAML
243
340
0
01 Jan 2021
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
238
1,898
0
31 Dec 2020
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
Timo Schick
Hinrich Schütze
248
1,382
0
21 Jan 2020
Language Models as Knowledge Bases?
Fabio Petroni
Tim Rocktaschel
Patrick Lewis
A. Bakhtin
Yuxiang Wu
Alexander H. Miller
Sebastian Riedel
KELM
AI4MH
391
2,216
0
03 Sep 2019
1