ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.09490
  4. Cited By
Neural Network Quantisation for Faster Homomorphic Encryption
v1v2 (latest)

Neural Network Quantisation for Faster Homomorphic Encryption

19 April 2023
Wouter Legiest
Jan-Pieter DÁnvers
Furkan Turan
Michiel Van Beirendonck
Ingrid Verbauwhede
    MQ
ArXiv (abs)PDFHTML

Papers citing "Neural Network Quantisation for Faster Homomorphic Encryption"

3 / 3 papers shown
Title
An End-to-End Homomorphically Encrypted Neural Network
An End-to-End Homomorphically Encrypted Neural Network
Marcos Florencio
Luiz Alencar
Bianca Lima
SyDa
139
0
0
22 Feb 2025
DCT-CryptoNets: Scaling Private Inference in the Frequency Domain
DCT-CryptoNets: Scaling Private Inference in the Frequency Domain
Arjun Roy
Kaushik Roy
429
1
0
27 Aug 2024
Homomorphic WiSARDs: Efficient Weightless Neural Network training over
  encrypted data
Homomorphic WiSARDs: Efficient Weightless Neural Network training over encrypted data
Leonardo Neumann
Antonio Guimarães
Diego F. Aranha
Edson Borin
AAML
50
0
0
29 Mar 2024
1