Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.10061
Cited By
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
20 April 2023
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size"
24 / 24 papers shown
Title
Towards scientific machine learning for granular material simulations -- challenges and opportunities
Marc Fransen
Andreas Fürst
D. Tunuguntla
Daniel N. Wilke
Benedikt Alkin
...
Takayuki Shuku
WaiChing Sun
T. Weinhart
Dongwei Ye
Hongyang Cheng
AI4CE
23
0
0
01 Apr 2025
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Fabian L. Thiemann
Thiago Reschützegger
Massimiliano Esposito
Tseden Taddese
Juan D. Olarte-Plata
Fausto Martelli
AI4CE
42
0
0
31 Mar 2025
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
52
4
0
12 Mar 2025
Symmetry-Preserving Diffusion Models via Target Symmetrization
Vinh Tong
Yun Ye
Trung-Dung Hoang
Anji Liu
Guy Van den Broeck
Mathias Niepert
DiffM
75
0
0
17 Feb 2025
Implicit Delta Learning of High Fidelity Neural Network Potentials
Stephan Thaler
Cristian Gabellini
Nikhil Shenoy
Prudencio Tossou
AI4CE
73
0
0
08 Dec 2024
Learning Macroscopic Dynamics from Partial Microscopic Observations
Mengyi Chen
Qianxiao Li
AI4CE
26
0
0
31 Oct 2024
Scaling Molecular Dynamics with ab initio Accuracy to 149 Nanoseconds per Day
Jianxiong Li
Boyang Li
Zhuoqiang Guo
Mingzhen Li
Enji Li
Lijun Liu
Guojun Yuan
Zhan Wang
Guangming Tan
Weile Jia
AI4CE
25
1
0
30 Oct 2024
On the design space between molecular mechanics and machine learning force fields
Yuanqing Wang
Kenichiro Takaba
Michael S. Chen
Marcus Wieder
Yuzhi Xu
...
Kyunghyun Cho
Joe G. Greener
Peter K. Eastman
Stefano Martiniani
M. Tuckerman
AI4CE
32
4
0
03 Sep 2024
Breaking the Molecular Dynamics Timescale Barrier Using a Wafer-Scale System
Kylee Santos
Stan Moore
Tomas Oppelstrup
Amirali Sharifian
I. Sharapov
...
S. Pakin
Edgar A Leon
J. Laros
Michael James
S. Rajamanickam
AI4CE
25
3
0
13 May 2024
Overcoming systematic softening in universal machine learning interatomic potentials by fine-tuning
Bowen Deng
Yunyeong Choi
Peichen Zhong
Janosh Riebesell
Shashwat Anand
Zhuohan Li
KyuJung Jun
Kristin A. Persson
Gerbrand Ceder
AI4CE
24
16
0
11 May 2024
Grappa -- A Machine Learned Molecular Mechanics Force Field
Leif Seute
Eric Hartmann
Jan Stühmer
Frauke Gräter
27
3
0
25 Mar 2024
Generalizing Denoising to Non-Equilibrium Structures Improves Equivariant Force Fields
Yi-Lun Liao
Tess E. Smidt
Abhishek Das
DiffM
AI4CE
25
10
0
14 Mar 2024
LTAU-FF: Loss Trajectory Analysis for Uncertainty in Atomistic Force Fields
Joshua A. Vita
Amit Samanta
Fei Zhou
Vincenzo Lordi
16
2
0
01 Feb 2024
A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics
Shengchao Liu
Weitao Du
Yanjing Li
Zhuoxinran Li
Vignesh C. Bhethanabotla
...
O. Yaghi
C. Borgs
A. Anandkumar
Hongyu Guo
J. Chayes
AI4CE
32
4
0
26 Jan 2024
Navigating protein landscapes with a machine-learned transferable coarse-grained model
N. Charron
Felix Musil
Andrea Guljas
Yaoyi Chen
Klara Bonneau
...
B. Husic
Ankit Patel
Gianni de Fabritiis
Frank Noé
C. Clementi
AI4CE
11
13
0
27 Oct 2023
Learning Interatomic Potentials at Multiple Scales
Xiang Fu
Albert Musaelian
Anders Johansson
Tommi Jaakkola
Boris Kozinsky
27
2
0
20 Oct 2023
LagrangeBench: A Lagrangian Fluid Mechanics Benchmarking Suite
Stefania Costantini
Gianluca Galletti
Fabian Fritz
Stefan Adami
Nikolaus A. Adams
30
13
0
28 Sep 2023
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural Wavefunctions
Michael Scherbela
Leon Gerard
Philipp Grohs
28
5
0
15 Jul 2023
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
Guillem Simeon
Gianni de Fabritiis
16
43
0
10 Jun 2023
Evaluation of the MACE Force Field Architecture: from Medicinal Chemistry to Materials Science
D. P. Kovács
Ilyes Batatia
E. Arany
Gábor Csányi
AI4CE
8
80
0
23 May 2023
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni de Fabritiis
T. Markland
24
105
0
21 Sep 2022
Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
Oliver T. Unke
M. Stohr
Stefan Ganscha
Thomas Unterthiner
Hartmut Maennel
...
Daniel Ahlin
M. Gastegger
L. M. Sandonas
A. Tkatchenko
Klaus-Robert Muller
AI4CE
24
18
0
17 May 2022
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
142
242
0
01 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
1