ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.10126
  4. Cited By
Decouple Graph Neural Networks: Train Multiple Simple GNNs
  Simultaneously Instead of One

Decouple Graph Neural Networks: Train Multiple Simple GNNs Simultaneously Instead of One

20 April 2023
Hongyuan Zhang
Yanan Zhu
Xuelong Li
ArXivPDFHTML

Papers citing "Decouple Graph Neural Networks: Train Multiple Simple GNNs Simultaneously Instead of One"

5 / 5 papers shown
Title
Adaptive Data-Free Quantization
Adaptive Data-Free Quantization
Biao Qian
Yang Wang
Richang Hong
Meng Wang
MQ
32
33
0
13 Mar 2023
Switchable Online Knowledge Distillation
Switchable Online Knowledge Distillation
Biao Qian
Yang Wang
Hongzhi Yin
Richang Hong
Meng Wang
56
37
0
12 Sep 2022
Boost then Convolve: Gradient Boosting Meets Graph Neural Networks
Boost then Convolve: Gradient Boosting Meets Graph Neural Networks
Sergei Ivanov
Liudmila Prokhorenkova
AI4CE
51
51
0
21 Jan 2021
L$^2$-GCN: Layer-Wise and Learned Efficient Training of Graph
  Convolutional Networks
L2^22-GCN: Layer-Wise and Learned Efficient Training of Graph Convolutional Networks
Yuning You
Tianlong Chen
Zhangyang Wang
Yang Shen
GNN
86
82
0
30 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
226
1,935
0
09 Jun 2018
1