ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.10577
  4. Cited By
B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
  Hidden Confounding
v1v2 (latest)

B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding

International Conference on Machine Learning (ICML), 2023
20 April 2023
Miruna Oprescu
Jacob Dorn
Marah Ghoummaid
Andrew Jesson
Nathan Kallus
Uri Shalit
    CMLFedML
ArXiv (abs)PDFHTML

Papers citing "B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding"

9 / 9 papers shown
Title
Spatial Deconfounder: Interference-Aware Deconfounding for Spatial Causal Inference
Spatial Deconfounder: Interference-Aware Deconfounding for Spatial Causal Inference
Ayush Khot
Miruna Oprescu
Maresa Schröder
Ai Kagawa
Xihaier Luo
CML
100
1
0
09 Oct 2025
Constructing Confidence Intervals for Average Treatment Effects from Multiple Datasets
Constructing Confidence Intervals for Average Treatment Effects from Multiple DatasetsInternational Conference on Learning Representations (ICLR), 2024
Yuxin Wang
Maresa Schröder
Dennis Frauen
Jonas Schweisthal
Konstantin Hess
Stefan Feuerriegel
CML
429
5
0
16 Dec 2024
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal LearnerNeural Information Processing Systems (NeurIPS), 2024
Valentyn Melnychuk
Stefan Feuerriegel
Mihaela van der Schaar
CML
455
5
0
05 Nov 2024
Efficient and Sharp Off-Policy Evaluation in Robust Markov Decision
  Processes
Efficient and Sharp Off-Policy Evaluation in Robust Markov Decision Processes
Andrew Bennett
Nathan Kallus
Miruna Oprescu
Wen Sun
Kaiwen Wang
AAMLOffRL
214
2
0
29 Mar 2024
Hidden yet quantifiable: A lower bound for confounding strength using
  randomized trials
Hidden yet quantifiable: A lower bound for confounding strength using randomized trials
Piersilvio De Bartolomeis
Javier Abad
Konstantin Donhauser
Fanny Yang
CML
214
10
0
06 Dec 2023
Bounds on Representation-Induced Confounding Bias for Treatment Effect
  Estimation
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
275
19
0
19 Nov 2023
Partial Counterfactual Identification of Continuous Outcomes with a
  Curvature Sensitivity Model
Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity ModelNeural Information Processing Systems (NeurIPS), 2023
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
465
13
0
02 Jun 2023
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden
  Confounding
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden ConfoundingInternational Conference on Learning Representations (ICLR), 2023
Alizée Pace
Hugo Yèche
Bernhard Schölkopf
Gunnar Rätsch
Guy Tennenholtz
OffRL
169
8
0
01 Jun 2023
Sharp Bounds for Generalized Causal Sensitivity Analysis
Sharp Bounds for Generalized Causal Sensitivity AnalysisNeural Information Processing Systems (NeurIPS), 2023
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
CML
324
25
0
26 May 2023
1