ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.11665
14
0

Accelerated Doubly Stochastic Gradient Algorithm for Large-scale Empirical Risk Minimization

23 April 2023
Zebang Shen
Hui Qian
Tongzhou Mu
Chao Zhang
    ODL
ArXivPDFHTML
Abstract

Nowadays, algorithms with fast convergence, small memory footprints, and low per-iteration complexity are particularly favorable for artificial intelligence applications. In this paper, we propose a doubly stochastic algorithm with a novel accelerating multi-momentum technique to solve large scale empirical risk minimization problem for learning tasks. While enjoying a provably superior convergence rate, in each iteration, such algorithm only accesses a mini batch of samples and meanwhile updates a small block of variable coordinates, which substantially reduces the amount of memory reference when both the massive sample size and ultra-high dimensionality are involved. Empirical studies on huge scale datasets are conducted to illustrate the efficiency of our method in practice.

View on arXiv
Comments on this paper