ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.12269
  4. Cited By
Enriching Source Code with Contextual Data for Code Completion Models:
  An Empirical Study

Enriching Source Code with Contextual Data for Code Completion Models: An Empirical Study

24 April 2023
Tim van Dam
M. Izadi
A. van Deursen
ArXivPDFHTML

Papers citing "Enriching Source Code with Contextual Data for Code Completion Models: An Empirical Study"

4 / 4 papers shown
Title
GitChameleon: Unmasking the Version-Switching Capabilities of Code
  Generation Models
GitChameleon: Unmasking the Version-Switching Capabilities of Code Generation Models
Nizar Islah
Justine Gehring
Diganta Misra
Eilif B. Muller
Irina Rish
Terry Yue Zhuo
Massimo Caccia
SyDa
40
1
0
05 Nov 2024
Extending Source Code Pre-Trained Language Models to Summarise
  Decompiled Binaries
Extending Source Code Pre-Trained Language Models to Summarise Decompiled Binaries
Ali Al-Kaswan
Toufique Ahmed
M. Izadi
A. Sawant
Prem Devanbu
A. van Deursen
SyDa
98
32
0
04 Jan 2023
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for
  Code Understanding and Generation
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation
Yue Wang
Weishi Wang
Shafiq R. Joty
S. Hoi
235
1,489
0
02 Sep 2021
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
  and Generation
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation
Shuai Lu
Daya Guo
Shuo Ren
Junjie Huang
Alexey Svyatkovskiy
...
Nan Duan
Neel Sundaresan
Shao Kun Deng
Shengyu Fu
Shujie Liu
ELM
198
1,105
0
09 Feb 2021
1