Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.12567
Cited By
Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks
25 April 2023
Jesse Farebrother
Joshua Greaves
Rishabh Agarwal
Charline Le Lan
Ross Goroshin
P. S. Castro
Marc G. Bellemare
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks"
11 / 11 papers shown
Title
Multi-Task Reinforcement Learning Enables Parameter Scaling
Reginald McLean
Evangelos Chataroulas
Jordan Terry
Isaac Woungang
Nariman Farsad
P. S. Castro
LRM
44
0
0
07 Mar 2025
Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching
A. Jain
Harley Wiltzer
Jesse Farebrother
Irina Rish
Glen Berseth
Sanjiban Choudhury
49
1
0
11 Nov 2024
MAD-TD: Model-Augmented Data stabilizes High Update Ratio RL
C. Voelcker
Marcel Hussing
Eric Eaton
Amir-massoud Farahmand
Igor Gilitschenski
39
1
0
11 Oct 2024
Don't flatten, tokenize! Unlocking the key to SoftMoE's efficacy in deep RL
Ghada Sokar
J. Obando-Ceron
Aaron C. Courville
Hugo Larochelle
Pablo Samuel Castro
MoE
119
2
0
02 Oct 2024
Proper Laplacian Representation Learning
Diego Gomez
Michael H. Bowling
Marlos C. Machado
15
0
0
16 Oct 2023
Bigger, Better, Faster: Human-level Atari with human-level efficiency
Max Schwarzer
J. Obando-Ceron
Aaron C. Courville
Marc G. Bellemare
Rishabh Agarwal
P. S. Castro
OffRL
43
82
0
30 May 2023
Deep Laplacian-based Options for Temporally-Extended Exploration
Martin Klissarov
Marlos C. Machado
OffRL
14
18
0
26 Jan 2023
Model-free Representation Learning and Exploration in Low-rank MDPs
Aditya Modi
Jinglin Chen
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
OffRL
102
78
0
14 Feb 2021
Learning Successor States and Goal-Dependent Values: A Mathematical Viewpoint
Léonard Blier
Corentin Tallec
Yann Ollivier
46
30
0
18 Jan 2021
Decoupling Representation Learning from Reinforcement Learning
Adam Stooke
Kimin Lee
Pieter Abbeel
Michael Laskin
SSL
DRL
284
339
0
14 Sep 2020
Spectral Inference Networks: Unifying Deep and Spectral Learning
David Pfau
Stig Petersen
Ashish Agarwal
David Barrett
Kimberly L. Stachenfeld
49
40
0
06 Jun 2018
1