ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.13403
  4. Cited By
Development of a Realistic Crowd Simulation Environment for Fine-grained
  Validation of People Tracking Methods

Development of a Realistic Crowd Simulation Environment for Fine-grained Validation of People Tracking Methods

26 April 2023
P. Foszner
Agnieszka Szczęsna
Luca Ciampi
Nicola Messina
Adam Cygan
Bartosz Bizoń
M. Cogiel
Dominik Golba
E. Macioszek
M. Staniszewski
ArXivPDFHTML

Papers citing "Development of a Realistic Crowd Simulation Environment for Fine-grained Validation of People Tracking Methods"

3 / 3 papers shown
Title
MOT20: A benchmark for multi object tracking in crowded scenes
MOT20: A benchmark for multi object tracking in crowded scenes
Patrick Dendorfer
Hamid Rezatofighi
Anton Milan
Javen Qinfeng Shi
Daniel Cremers
Ian Reid
Stefan Roth
Konrad Schindler
Laura Leal-Taixé
VOT
161
620
0
19 Mar 2020
Deep Cosine Metric Learning for Person Re-Identification
Deep Cosine Metric Learning for Person Re-Identification
N. Wojke
Alex Bewley
31
349
0
02 Dec 2018
Simple Online and Realtime Tracking with a Deep Association Metric
Simple Online and Realtime Tracking with a Deep Association Metric
N. Wojke
Alex Bewley
Dietrich Paulus
VOT
217
3,407
0
21 Mar 2017
1