ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.13916
24
6

MIPI 2023 Challenge on RGB+ToF Depth Completion: Methods and Results

27 April 2023
Qingpeng Zhu
Wenxiu Sun
Yu Dai
Chongyi Li
Shangchen Zhou
Ruicheng Feng
Qi Sun
Chen Change Loy
Jinwei Gu
Yi Yu
Yang Huang
Kang Zhang
Meiya Chen
Yu Wang
Yong-Chao Li
Hao Jiang
A. Muduli
Vikash Kumar
Kunal Swami
Pankaj Bajpai
Yunchao Ma
Jiajun Xiao
Zhi Ling
    MDE
ArXivPDFHTML
Abstract

Depth completion from RGB images and sparse Time-of-Flight (ToF) measurements is an important problem in computer vision and robotics. While traditional methods for depth completion have relied on stereo vision or structured light techniques, recent advances in deep learning have enabled more accurate and efficient completion of depth maps from RGB images and sparse ToF measurements. To evaluate the performance of different depth completion methods, we organized an RGB+sparse ToF depth completion competition. The competition aimed to encourage research in this area by providing a standardized dataset and evaluation metrics to compare the accuracy of different approaches. In this report, we present the results of the competition and analyze the strengths and weaknesses of the top-performing methods. We also discuss the implications of our findings for future research in RGB+sparse ToF depth completion. We hope that this competition and report will help to advance the state-of-the-art in this important area of research. More details of this challenge and the link to the dataset can be found at https://mipi-challenge.org/MIPI2023.

View on arXiv
Comments on this paper