ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.03002
  4. Cited By
Evaluating Post-hoc Interpretability with Intrinsic Interpretability

Evaluating Post-hoc Interpretability with Intrinsic Interpretability

4 May 2023
J. P. Amorim
P. Abreu
João A. M. Santos
Henning Muller
    FAtt
ArXivPDFHTML

Papers citing "Evaluating Post-hoc Interpretability with Intrinsic Interpretability"

2 / 2 papers shown
Title
A causal framework for explaining the predictions of black-box
  sequence-to-sequence models
A causal framework for explaining the predictions of black-box sequence-to-sequence models
David Alvarez-Melis
Tommi Jaakkola
CML
219
201
0
06 Jul 2017
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
247
36,237
0
25 Aug 2016
1