ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.04288
  4. Cited By
Towards Achieving Near-optimal Utility for Privacy-Preserving Federated
  Learning via Data Generation and Parameter Distortion

Towards Achieving Near-optimal Utility for Privacy-Preserving Federated Learning via Data Generation and Parameter Distortion

7 May 2023
Xiaojin Zhang
Kai Chen
Qian Yang
    FedML
ArXivPDFHTML

Papers citing "Towards Achieving Near-optimal Utility for Privacy-Preserving Federated Learning via Data Generation and Parameter Distortion"

3 / 3 papers shown
Title
A Game-theoretic Framework for Privacy-preserving Federated Learning
A Game-theoretic Framework for Privacy-preserving Federated Learning
Xiaojin Zhang
Lixin Fan
Si-Yi Wang
Wenjie Li
Kai Chen
Qiang Yang
FedML
21
4
0
11 Apr 2023
Federated Deep Learning with Bayesian Privacy
Federated Deep Learning with Bayesian Privacy
Hanlin Gu
Lixin Fan
Bowen Li Jie Li
Yan Kang
Yuan Yao
Qiang Yang
FedML
79
24
0
27 Sep 2021
Privacy Against Statistical Inference
Privacy Against Statistical Inference
Flavio du Pin Calmon
N. Fawaz
FedML
97
345
0
08 Oct 2012
1