ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.05621
54
23

Deep Learning-based Estimation for Multitarget Radar Detection

IEEE Vehicular Technology Conference (VTC), 2023
5 May 2023
Mamady Delamou
Ahmad Bazzi
Marwa Chafii
El-Mehdi Amhoud
    ObjD
ArXiv (abs)PDFHTML
Abstract

Target detection and recognition is a very challenging task in a wireless environment where a multitude of objects are located, whether to effectively determine their positions or to identify them and predict their moves. In this work, we propose a new method based on a convolutional neural network (CNN) to estimate the range and velocity of moving targets directly from the range-Doppler map of the detected signals. We compare the obtained results to the two dimensional (2D) periodogram, and to the similar state of the art methods, 2DResFreq and VGG-19 network and show that the estimation process performed with our model provides better estimation accuracy of range and velocity index in different signal to noise ratio (SNR) regimes along with a reduced prediction time. Afterwards, we assess the performance of our proposed algorithm using the peak signal to noise ratio (PSNR) which is a relevant metric to analyse the quality of an output image obtained from compression or noise reduction. Compared to the 2D-periodogram, 2DResFreq and VGG-19, we gain 33 dB, 21 dB and 10 dB, respectively, in terms of PSNR when SNR = 30 dB.

View on arXiv
Comments on this paper