ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.05722
  4. Cited By
Enhancing Clinical Predictive Modeling through Model Complexity-Driven
  Class Proportion Tuning for Class Imbalanced Data: An Empirical Study on
  Opioid Overdose Prediction

Enhancing Clinical Predictive Modeling through Model Complexity-Driven Class Proportion Tuning for Class Imbalanced Data: An Empirical Study on Opioid Overdose Prediction

9 May 2023
Yinan Liu
Xinyu Dong
Weimin Lyu
R. Rosenthal
Rachel Wong
Tengfei Ma
Fusheng Wang
ArXivPDFHTML

Papers citing "Enhancing Clinical Predictive Modeling through Model Complexity-Driven Class Proportion Tuning for Class Imbalanced Data: An Empirical Study on Opioid Overdose Prediction"

1 / 1 papers shown
Title
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
163
25,247
0
09 Jun 2011
1