ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.06408
  4. Cited By
Accelerating Batch Active Learning Using Continual Learning Techniques
v1v2 (latest)

Accelerating Batch Active Learning Using Continual Learning Techniques

10 May 2023
Arnav M. Das
Gantavya Bhatt
M. Bhalerao
Vianne R. Gao
Rui Yang
J. Bilmes
    VLMCLL
ArXiv (abs)PDFHTMLHuggingFace (1 upvotes)

Papers citing "Accelerating Batch Active Learning Using Continual Learning Techniques"

5 / 5 papers shown
Diversified Batch Selection for Training Acceleration
Diversified Batch Selection for Training AccelerationInternational Conference on Machine Learning (ICML), 2024
Feng Hong
Yueming Lyu
Jiangchao Yao
Ya Zhang
Ivor W. Tsang
Yanfeng Wang
271
10
0
07 Jun 2024
Investigating the Quality of DermaMNIST and Fitzpatrick17k Dermatological Image Datasets
Investigating the Quality of DermaMNIST and Fitzpatrick17k Dermatological Image DatasetsScientific Data (Sci Data), 2024
Kumar Abhishek
Aditi Jain
Ghassan Hamarneh
347
15
0
25 Jan 2024
LabelBench: A Comprehensive Framework for Benchmarking Adaptive
  Label-Efficient Learning
LabelBench: A Comprehensive Framework for Benchmarking Adaptive Label-Efficient Learning
Jifan Zhang
Yifang Chen
Gregory H. Canal
Stephen Mussmann
Arnav M. Das
...
Yinglun Zhu
Jeffrey Bilmes
S. Du
Kevin Jamieson
Robert D. Nowak
VLM
451
24
0
16 Jun 2023
Navigating the Pitfalls of Active Learning Evaluation: A Systematic
  Framework for Meaningful Performance Assessment
Navigating the Pitfalls of Active Learning Evaluation: A Systematic Framework for Meaningful Performance AssessmentNeural Information Processing Systems (NeurIPS), 2023
Carsten T. Lüth
Till J. Bungert
Lukas Klein
Paul F. Jaeger
321
18
0
25 Jan 2023
Diversify Your Datasets: Analyzing Generalization via Controlled
  Variance in Adversarial Datasets
Diversify Your Datasets: Analyzing Generalization via Controlled Variance in Adversarial DatasetsConference on Computational Natural Language Learning (CoNLL), 2019
Ohad Rozen
Vered Shwartz
Roee Aharoni
Ido Dagan
AAML
194
39
0
21 Oct 2019
1