ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.07089
16
0

Hierarchically Coherent Multivariate Mixture Networks

11 May 2023
Kin G. Olivares
Dave Luo
Cristian Challu
Stefania La Vattiata
Max Mergenthaler-Canseco
A. Dubrawski
    BDL
    AI4TS
ArXivPDFHTML
Abstract

Large collections of time series data are often organized into hierarchies with different levels of aggregation; examples include product and geographical groupings. Probabilistic coherent forecasting is tasked to produce forecasts consistent across levels of aggregation. In this study, we propose to augment neural forecasting architectures with a coherent multivariate mixture output. We optimize the networks with a composite likelihood objective, allowing us to capture time series' relationships while maintaining high computational efficiency. Our approach demonstrates 13.2% average accuracy improvements on most datasets compared to state-of-the-art baselines. We conduct ablation studies of the framework components and provide theoretical foundations for them. To assist related work, the code is available at this https://github.com/Nixtla/neuralforecast.

View on arXiv
Comments on this paper