ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.07583
  4. Cited By
MoMo: Momentum Models for Adaptive Learning Rates

MoMo: Momentum Models for Adaptive Learning Rates

12 May 2023
Fabian Schaipp
Ruben Ohana
Michael Eickenberg
Aaron Defazio
Robert Mansel Gower
ArXivPDFHTML

Papers citing "MoMo: Momentum Models for Adaptive Learning Rates"

11 / 11 papers shown
Title
Analysis of an Idealized Stochastic Polyak Method and its Application to Black-Box Model Distillation
Analysis of an Idealized Stochastic Polyak Method and its Application to Black-Box Model Distillation
Robert M. Gower
Guillaume Garrigos
Nicolas Loizou
Dimitris Oikonomou
Konstantin Mishchenko
Fabian Schaipp
31
0
0
02 Apr 2025
RecMoDiffuse: Recurrent Flow Diffusion for Human Motion Generation
RecMoDiffuse: Recurrent Flow Diffusion for Human Motion Generation
Mirgahney Mohamed
Harry Jake Cunningham
M. Deisenroth
Lourdes Agapito
DiffM
33
0
0
11 Jun 2024
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
53
4
0
06 Jun 2024
Enhancing Policy Gradient with the Polyak Step-Size Adaption
Enhancing Policy Gradient with the Polyak Step-Size Adaption
Yunxiang Li
Rui Yuan
Chen Fan
Mark W. Schmidt
Samuel Horváth
Robert Mansel Gower
Martin Takávc
35
0
0
11 Apr 2024
Batch size invariant Adam
Batch size invariant Adam
Xi Wang
Laurence Aitchison
38
2
0
29 Feb 2024
Implicit Bias and Fast Convergence Rates for Self-attention
Implicit Bias and Fast Convergence Rates for Self-attention
Bhavya Vasudeva
Puneesh Deora
Christos Thrampoulidis
24
13
0
08 Feb 2024
SANIA: Polyak-type Optimization Framework Leads to Scale Invariant
  Stochastic Algorithms
SANIA: Polyak-type Optimization Framework Leads to Scale Invariant Stochastic Algorithms
Farshed Abdukhakimov
Chulu Xiang
Dmitry Kamzolov
Robert Mansel Gower
Martin Takáč
32
2
0
28 Dec 2023
Regularized PolyKervNets: Optimizing Expressiveness and Efficiency for
  Private Inference in Deep Neural Networks
Regularized PolyKervNets: Optimizing Expressiveness and Efficiency for Private Inference in Deep Neural Networks
Toluwani Aremu
25
0
0
23 Dec 2023
Stochastic Gradient Descent with Preconditioned Polyak Step-size
Stochastic Gradient Descent with Preconditioned Polyak Step-size
Farshed Abdukhakimov
Chulu Xiang
Dmitry Kamzolov
Martin Takáč
23
5
0
03 Oct 2023
Accelerated, Optimal, and Parallel: Some Results on Model-Based
  Stochastic Optimization
Accelerated, Optimal, and Parallel: Some Results on Model-Based Stochastic Optimization
Karan N. Chadha
Gary Cheng
John C. Duchi
49
16
0
07 Jan 2021
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,453
0
23 Jan 2020
1