ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.08573
  4. Cited By
A graph convolutional autoencoder approach to model order reduction for
  parametrized PDEs

A graph convolutional autoencoder approach to model order reduction for parametrized PDEs

15 May 2023
F. Pichi
B. Moya
J. Hesthaven
    AI4CE
ArXivPDFHTML

Papers citing "A graph convolutional autoencoder approach to model order reduction for parametrized PDEs"

24 / 24 papers shown
Title
Mesh-based Super-Resolution of Fluid Flows with Multiscale Graph Neural Networks
Mesh-based Super-Resolution of Fluid Flows with Multiscale Graph Neural Networks
Shivam Barwey
Pinaki Pal
Saumil Patel
Riccardo Balin
Bethany Lusch
V. Vishwanath
R. Maulik
R. Balakrishnan
AI4CE
93
0
0
12 Sep 2024
Data-driven identification of latent port-Hamiltonian systems
Data-driven identification of latent port-Hamiltonian systems
J. Rettberg
Jonas Kneifl
Julius Herb
Patrick Buchfink
Jörg Fehr
B. Haasdonk
PINN
14
2
0
15 Aug 2024
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly
  Sparse Graphs
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
Hrishikesh Viswanath
Yue Chang
Julius Berner
Peter Yichen Chen
Aniket Bera
AI4CE
58
2
0
04 Jul 2024
Sparsifying dimensionality reduction of PDE solution data with Bregman
  learning
Sparsifying dimensionality reduction of PDE solution data with Bregman learning
T. J. Heeringa
Christoph Brune
Mengwu Guo
19
0
0
18 Jun 2024
Enhancing Graph U-Nets for Mesh-Agnostic Spatio-Temporal Flow Prediction
Enhancing Graph U-Nets for Mesh-Agnostic Spatio-Temporal Flow Prediction
Sunwoong Yang
Ricardo Vinuesa
Namwoo Kang
AI4CE
28
4
0
06 Jun 2024
GFN: A graph feedforward network for resolution-invariant reduced
  operator learning in multifidelity applications
GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications
Oisín M. Morrison
F. Pichi
J. Hesthaven
AI4CE
19
1
0
05 Jun 2024
Neural empirical interpolation method for nonlinear model reduction
Neural empirical interpolation method for nonlinear model reduction
Max Hirsch
F. Pichi
J. Hesthaven
27
1
0
05 Jun 2024
Graph Neural PDE Solvers with Conservation and Similarity-Equivariance
Graph Neural PDE Solvers with Conservation and Similarity-Equivariance
Masanobu Horie
Naoto Mitsume
AI4CE
19
5
0
25 May 2024
PTPI-DL-ROMs: pre-trained physics-informed deep learning-based reduced
  order models for nonlinear parametrized PDEs
PTPI-DL-ROMs: pre-trained physics-informed deep learning-based reduced order models for nonlinear parametrized PDEs
Simone Brivio
S. Fresca
Andrea Manzoni
AI4CE
28
6
0
14 May 2024
A comparison of Single- and Double-generator formalisms for
  Thermodynamics-Informed Neural Networks
A comparison of Single- and Double-generator formalisms for Thermodynamics-Informed Neural Networks
Pau Urdeitx
Ic´ıar Alfaro
David González
Francisco Chinesta
Elías Cueto
AI4CE
28
1
0
01 Apr 2024
Multi-Hierarchical Surrogate Learning for Structural Dynamical Crash
  Simulations Using Graph Convolutional Neural Networks
Multi-Hierarchical Surrogate Learning for Structural Dynamical Crash Simulations Using Graph Convolutional Neural Networks
Jonas Kneifl
Jörg Fehr
Steven L. Brunton
J. Nathan Kutz
AI4CE
20
1
0
14 Feb 2024
A practical existence theorem for reduced order models based on
  convolutional autoencoders
A practical existence theorem for reduced order models based on convolutional autoencoders
N. R. Franco
Simone Brugiapaglia
AI4CE
16
4
0
01 Feb 2024
Polytopic Autoencoders with Smooth Clustering for Reduced-order
  Modelling of Flows
Polytopic Autoencoders with Smooth Clustering for Reduced-order Modelling of Flows
Jan Heiland
Yongho Kim
AI4CE
11
2
0
19 Jan 2024
Mitigating distribution shift in machine learning-augmented hybrid
  simulation
Mitigating distribution shift in machine learning-augmented hybrid simulation
Jiaxi Zhao
Qianxiao Li
19
2
0
17 Jan 2024
Generating synthetic data for neural operators
Generating synthetic data for neural operators
Erisa Hasani
Rachel A. Ward
AI4CE
37
7
0
04 Jan 2024
Optimal Transport-inspired Deep Learning Framework for Slow-Decaying Kolmogorov n-width Problems: Exploiting Sinkhorn Loss and Wasserstein Kernel
Optimal Transport-inspired Deep Learning Framework for Slow-Decaying Kolmogorov n-width Problems: Exploiting Sinkhorn Loss and Wasserstein Kernel
M. Khamlich
F. Pichi
G. Rozza
13
5
0
26 Aug 2023
Branched Latent Neural Maps
Branched Latent Neural Maps
M. Salvador
Alison Lesley Marsden
22
4
0
04 Aug 2023
Deep Learning-based surrogate models for parametrized PDEs: handling
  geometric variability through graph neural networks
Deep Learning-based surrogate models for parametrized PDEs: handling geometric variability through graph neural networks
N. R. Franco
S. Fresca
Filippo Tombari
Andrea Manzoni
AI4CE
16
16
0
03 Aug 2023
Learning Reduced-Order Models for Cardiovascular Simulations with Graph
  Neural Networks
Learning Reduced-Order Models for Cardiovascular Simulations with Graph Neural Networks
Luca Pegolotti
Martin R. Pfaller
Natalia L. Rubio
Ke Ding
Rita Brugarolas Brufau
Eric F. Darve
Alison L. Marsden
AI4CE
41
31
0
13 Mar 2023
An Implicit GNN Solver for Poisson-like problems
An Implicit GNN Solver for Poisson-like problems
Matthieu Nastorg
M. Bucci
T. Faney
J. Gratien
Guillaume Charpiat
Marc Schoenauer
AI4CE
26
2
0
06 Feb 2023
A Comparison of Neural Network Architectures for Data-Driven
  Reduced-Order Modeling
A Comparison of Neural Network Architectures for Data-Driven Reduced-Order Modeling
A. Gruber
M. Gunzburger
L. Ju
Zhu Wang
GNN
21
62
0
05 Oct 2021
Enhancing Computational Fluid Dynamics with Machine Learning
Enhancing Computational Fluid Dynamics with Machine Learning
Ricardo Vinuesa
Steven L. Brunton
AI4CE
98
351
0
05 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
163
1,095
0
27 Apr 2021
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
1