Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.08841
Cited By
A Theoretical Analysis of Optimistic Proximal Policy Optimization in Linear Markov Decision Processes
15 May 2023
Han Zhong
Tong Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Theoretical Analysis of Optimistic Proximal Policy Optimization in Linear Markov Decision Processes"
22 / 22 papers shown
Title
Enhancing PPO with Trajectory-Aware Hybrid Policies
Qisai Liu
Zhanhong Jiang
Hsin-Jung Yang
Mahsa Khosravi
Joshua R. Waite
S. Sarkar
44
0
0
21 Feb 2025
Pessimism Meets Risk: Risk-Sensitive Offline Reinforcement Learning
Dake Zhang
Boxiang Lyu
Shuang Qiu
Mladen Kolar
Tong Zhang
OffRL
30
0
0
10 Jul 2024
Narrowing the Gap between Adversarial and Stochastic MDPs via Policy Optimization
D. Tiapkin
Evgenii Chzhen
Gilles Stoltz
74
0
0
08 Jul 2024
Warm-up Free Policy Optimization: Improved Regret in Linear Markov Decision Processes
Asaf B. Cassel
Aviv A. Rosenberg
35
1
0
03 Jul 2024
Imitation Learning in Discounted Linear MDPs without exploration assumptions
Luca Viano
Stratis Skoulakis
V. Cevher
30
3
0
03 May 2024
DPO Meets PPO: Reinforced Token Optimization for RLHF
Han Zhong
Guhao Feng
Guhao Feng
Li Zhao
Di He
Jiang Bian
Liwei Wang
Jiang Bian
Liwei Wang
55
56
0
29 Apr 2024
Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation
Jianliang He
Han Zhong
Zhuoran Yang
26
6
0
19 Apr 2024
Distributionally Robust Reinforcement Learning with Interactive Data Collection: Fundamental Hardness and Near-Optimal Algorithm
Miao Lu
Han Zhong
Tong Zhang
Jose H. Blanchet
OffRL
OOD
71
4
0
04 Apr 2024
Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit Feedback and Unknown Transition
Long-Fei Li
Peng Zhao
Zhi-Hua Zhou
42
4
0
07 Mar 2024
Rethinking Model-based, Policy-based, and Value-based Reinforcement Learning via the Lens of Representation Complexity
Guhao Feng
Han Zhong
OffRL
68
3
0
28 Dec 2023
Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint
Wei Xiong
Hanze Dong
Chen Ye
Ziqi Wang
Han Zhong
Heng Ji
Nan Jiang
Tong Zhang
OffRL
36
155
0
18 Dec 2023
Learning Adversarial Low-rank Markov Decision Processes with Unknown Transition and Full-information Feedback
Canzhe Zhao
Ruofeng Yang
Baoxiang Wang
Xuezhou Zhang
Shuai Li
22
2
0
14 Nov 2023
Towards Optimal Regret in Adversarial Linear MDPs with Bandit Feedback
Haolin Liu
Chen-Yu Wei
Julian Zimmert
22
6
0
17 Oct 2023
Rate-Optimal Policy Optimization for Linear Markov Decision Processes
Uri Sherman
Alon Cohen
Tomer Koren
Yishay Mansour
33
7
0
28 Aug 2023
Tackling Heavy-Tailed Rewards in Reinforcement Learning with Function Approximation: Minimax Optimal and Instance-Dependent Regret Bounds
Jiayi Huang
Han Zhong
Liwei Wang
Lin F. Yang
22
6
0
12 Jun 2023
Maximize to Explore: One Objective Function Fusing Estimation, Planning, and Exploration
Zhihan Liu
Miao Lu
Wei Xiong
Han Zhong
Haotian Hu
Shenao Zhang
Sirui Zheng
Zhuoran Yang
Zhaoran Wang
OffRL
32
22
0
29 May 2023
Computationally Efficient Horizon-Free Reinforcement Learning for Linear Mixture MDPs
Dongruo Zhou
Quanquan Gu
73
43
0
23 May 2022
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
303
11,909
0
04 Mar 2022
First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach
Andrew Wagenmaker
Yifang Chen
Max Simchowitz
S. Du
Kevin G. Jamieson
71
36
0
07 Dec 2021
Near-optimal Policy Optimization Algorithms for Learning Adversarial Linear Mixture MDPs
Jiafan He
Dongruo Zhou
Quanquan Gu
95
23
0
17 Feb 2021
Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP
Zihan Zhang
Jiaqi Yang
Xiangyang Ji
S. Du
59
36
0
29 Jan 2021
Provably Efficient Reinforcement Learning with Linear Function Approximation Under Adaptivity Constraints
Chi Jin
Zhuoran Yang
Zhaoran Wang
OffRL
107
166
0
06 Jan 2021
1