Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.10633
Cited By
Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models
18 May 2023
Alexandru Damian
Eshaan Nichani
Rong Ge
Jason D. Lee
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models"
33 / 33 papers shown
Title
Survey on Algorithms for multi-index models
Joan Bruna
Daniel Hsu
18
0
0
07 Apr 2025
Feature learning from non-Gaussian inputs: the case of Independent Component Analysis in high dimensions
Fabiola Ricci
Lorenzo Bardone
Sebastian Goldt
OOD
28
0
0
31 Mar 2025
Learning a Single Index Model from Anisotropic Data with vanilla Stochastic Gradient Descent
Guillaume Braun
Minh Ha Quang
Masaaki Imaizumi
MLT
32
0
0
31 Mar 2025
Provable Benefits of Unsupervised Pre-training and Transfer Learning via Single-Index Models
Taj Jones-McCormick
Aukosh Jagannath
S. Sen
36
0
0
24 Feb 2025
A distributional simplicity bias in the learning dynamics of transformers
Riccardo Rende
Federica Gerace
A. Laio
Sebastian Goldt
65
7
0
17 Feb 2025
Low-dimensional Functions are Efficiently Learnable under Randomly Biased Distributions
Elisabetta Cornacchia
Dan Mikulincer
Elchanan Mossel
49
0
0
10 Feb 2025
Spectral Estimators for Multi-Index Models: Precise Asymptotics and Optimal Weak Recovery
Filip Kovačević
Yihan Zhang
Marco Mondelli
65
0
0
03 Feb 2025
Gradient dynamics for low-rank fine-tuning beyond kernels
Arif Kerem Dayi
Sitan Chen
67
1
0
23 Nov 2024
Learning Gaussian Multi-Index Models with Gradient Flow: Time Complexity and Directional Convergence
Berfin Simsek
Amire Bendjeddou
Daniel Hsu
32
0
0
13 Nov 2024
Sample and Computationally Efficient Robust Learning of Gaussian Single-Index Models
Puqian Wang
Nikos Zarifis
Ilias Diakonikolas
Jelena Diakonikolas
32
1
0
08 Nov 2024
Pretrained transformer efficiently learns low-dimensional target functions in-context
Kazusato Oko
Yujin Song
Taiji Suzuki
Denny Wu
23
4
0
04 Nov 2024
A Random Matrix Theory Perspective on the Spectrum of Learned Features and Asymptotic Generalization Capabilities
Yatin Dandi
Luca Pesce
Hugo Cui
Florent Krzakala
Yue M. Lu
Bruno Loureiro
MLT
30
1
0
24 Oct 2024
Robust Feature Learning for Multi-Index Models in High Dimensions
Alireza Mousavi-Hosseini
Adel Javanmard
Murat A. Erdogdu
OOD
AAML
37
1
0
21 Oct 2024
Learning Multi-Index Models with Neural Networks via Mean-Field Langevin Dynamics
Alireza Mousavi-Hosseini
Denny Wu
Murat A. Erdogdu
MLT
AI4CE
27
6
0
14 Aug 2024
On the Complexity of Learning Sparse Functions with Statistical and Gradient Queries
Nirmit Joshi
Theodor Misiakiewicz
Nathan Srebro
16
6
0
08 Jul 2024
Crafting Heavy-Tails in Weight Matrix Spectrum without Gradient Noise
Vignesh Kothapalli
Tianyu Pang
Shenyang Deng
Zongmin Liu
Yaoqing Yang
21
3
0
07 Jun 2024
Online Learning and Information Exponents: On The Importance of Batch size, and Time/Complexity Tradeoffs
Luca Arnaboldi
Yatin Dandi
Florent Krzakala
Bruno Loureiro
Luca Pesce
Ludovic Stephan
35
1
0
04 Jun 2024
Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit
Jason D. Lee
Kazusato Oko
Taiji Suzuki
Denny Wu
MLT
71
20
0
03 Jun 2024
The High Line: Exact Risk and Learning Rate Curves of Stochastic Adaptive Learning Rate Algorithms
Elizabeth Collins-Woodfin
Inbar Seroussi
Begona García Malaxechebarría
Andrew W. Mackenzie
Elliot Paquette
Courtney Paquette
18
0
0
30 May 2024
Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
Luca Arnaboldi
Yatin Dandi
Florent Krzakala
Luca Pesce
Ludovic Stephan
53
11
0
24 May 2024
Agnostic Active Learning of Single Index Models with Linear Sample Complexity
Aarshvi Gajjar
Wai Ming Tai
Xingyu Xu
Chinmay Hegde
Yi Li
Chris Musco
24
2
0
15 May 2024
Sliding down the stairs: how correlated latent variables accelerate learning with neural networks
Lorenzo Bardone
Sebastian Goldt
25
7
0
12 Apr 2024
The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks: Breaking the Curse of Information and Leap Exponents
Yatin Dandi
Emanuele Troiani
Luca Arnaboldi
Luca Pesce
Lenka Zdeborová
Florent Krzakala
MLT
51
24
0
05 Feb 2024
Efficient Estimation of the Central Mean Subspace via Smoothed Gradient Outer Products
Gan Yuan
Mingyue Xu
Samory Kpotufe
Daniel Hsu
11
9
0
24 Dec 2023
Should Under-parameterized Student Networks Copy or Average Teacher Weights?
Berfin Simsek
Amire Bendjeddou
W. Gerstner
Johanni Brea
14
6
0
03 Nov 2023
Grokking as the Transition from Lazy to Rich Training Dynamics
Tanishq Kumar
Blake Bordelon
Samuel Gershman
C. Pehlevan
15
26
0
09 Oct 2023
Symmetric Single Index Learning
Aaron Zweig
Joan Bruna
MLT
10
2
0
03 Oct 2023
Gradient-Based Feature Learning under Structured Data
Alireza Mousavi-Hosseini
Denny Wu
Taiji Suzuki
Murat A. Erdogdu
MLT
10
18
0
07 Sep 2023
Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
32
7
0
07 Sep 2023
How Two-Layer Neural Networks Learn, One (Giant) Step at a Time
Yatin Dandi
Florent Krzakala
Bruno Loureiro
Luca Pesce
Ludovic Stephan
MLT
19
25
0
29 May 2023
SGD learning on neural networks: leap complexity and saddle-to-saddle dynamics
Emmanuel Abbe
Enric Boix-Adserà
Theodor Misiakiewicz
FedML
MLT
76
72
0
21 Feb 2023
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
147
65
0
27 Oct 2022
What Happens after SGD Reaches Zero Loss? --A Mathematical Framework
Zhiyuan Li
Tianhao Wang
Sanjeev Arora
MLT
83
98
0
13 Oct 2021
1