ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.11111
  4. Cited By
PPDONet: Deep Operator Networks for Fast Prediction of Steady-State
  Solutions in Disk-Planet Systems

PPDONet: Deep Operator Networks for Fast Prediction of Steady-State Solutions in Disk-Planet Systems

18 May 2023
S. Mao
R. Dong
Lu Lu
K. M. Yi
Sifan Wang
P. Perdikaris
ArXivPDFHTML

Papers citing "PPDONet: Deep Operator Networks for Fast Prediction of Steady-State Solutions in Disk-Planet Systems"

12 / 12 papers shown
Title
Cauchy Random Features for Operator Learning in Sobolev Space
Chunyang Liao
Deanna Needell
Hayden Schaeffer
34
0
0
01 Mar 2025
Conformalized Prediction of Post-Fault Voltage Trajectories Using
  Pre-trained and Finetuned Attention-Driven Neural Operators
Conformalized Prediction of Post-Fault Voltage Trajectories Using Pre-trained and Finetuned Attention-Driven Neural Operators
Amirhossein Mollaali
Gabriel Zufferey
Gonzalo E. Constante-Flores
Christian Moya
Can Li
Guang Lin
Meng Yue
42
85
0
31 Oct 2024
Disk2Planet: A Robust and Automated Machine Learning Tool for Parameter
  Inference in Disk-Planet Systems
Disk2Planet: A Robust and Automated Machine Learning Tool for Parameter Inference in Disk-Planet Systems
S. Mao
R. Dong
K. M. Yi
Lu Lu
Sifan Wang
P. Perdikaris
14
1
0
25 Sep 2024
Efficient and generalizable nested Fourier-DeepONet for
  three-dimensional geological carbon sequestration
Efficient and generalizable nested Fourier-DeepONet for three-dimensional geological carbon sequestration
Jonathan E. Lee
Min Zhu
Ziqiao Xi
Kun Wang
Yanhua O. Yuan
Lu Lu
AI4CE
21
3
0
25 Sep 2024
BiLO: Bilevel Local Operator Learning for PDE inverse problems
BiLO: Bilevel Local Operator Learning for PDE inverse problems
Ray Zirui Zhang
Xiaohui Xie
John S. Lowengrub
68
1
0
27 Apr 2024
Towards a Foundation Model for Partial Differential Equations: Multi-Operator Learning and Extrapolation
Towards a Foundation Model for Partial Differential Equations: Multi-Operator Learning and Extrapolation
Jingmin Sun
Yuxuan Liu
Zecheng Zhang
Hayden Schaeffer
AI4CE
25
14
0
18 Apr 2024
MODNO: Multi Operator Learning With Distributed Neural Operators
MODNO: Multi Operator Learning With Distributed Neural Operators
Zecheng Zhang
35
6
0
03 Apr 2024
Conformalized-DeepONet: A Distribution-Free Framework for Uncertainty
  Quantification in Deep Operator Networks
Conformalized-DeepONet: A Distribution-Free Framework for Uncertainty Quantification in Deep Operator Networks
Christian Moya
Amirhossein Mollaali
Zecheng Zhang
Lu Lu
Guang Lin
UQCV
47
17
0
23 Feb 2024
A Mathematical Guide to Operator Learning
A Mathematical Guide to Operator Learning
Nicolas Boullé
Alex Townsend
29
36
0
22 Dec 2023
D2NO: Efficient Handling of Heterogeneous Input Function Spaces with
  Distributed Deep Neural Operators
D2NO: Efficient Handling of Heterogeneous Input Function Spaces with Distributed Deep Neural Operators
Zecheng Zhang
Christian Moya
Lu Lu
Guang Lin
Hayden Schaeffer
16
11
0
29 Oct 2023
Fourier-DeepONet: Fourier-enhanced deep operator networks for full
  waveform inversion with improved accuracy, generalizability, and robustness
Fourier-DeepONet: Fourier-enhanced deep operator networks for full waveform inversion with improved accuracy, generalizability, and robustness
Min Zhu
Shihang Feng
Youzuo Lin
Lu Lu
14
60
0
26 May 2023
Fourier-MIONet: Fourier-enhanced multiple-input neural operators for
  multiphase modeling of geological carbon sequestration
Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multiphase modeling of geological carbon sequestration
Zhongyi Jiang
Min Zhu
Dongzhuo Li
Qiuzi Li
Yanhua O. Yuan
Lu Lu
AI4CE
46
49
0
08 Mar 2023
1