ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.14552
95
201
v1v2 (latest)

Sources of Hallucination by Large Language Models on Inference Tasks

23 May 2023
Nick McKenna
Tianyi Li
Liang Cheng
Mohammad Javad Hosseini
Mark Johnson
Mark Steedman
    LRMHILM
ArXiv (abs)PDFHTML
Abstract

Large Language Models (LLMs) are claimed to be capable of Natural Language Inference (NLI), necessary for applied tasks like question answering and summarization, yet this capability is under-explored. We present a series of behavioral studies on several LLM families (LLaMA, GPT-3.5, and PaLM) which probe their behavior using controlled experiments. We establish two factors which predict much of their performance, and propose that these are major sources of hallucination in generative LLM. First, the most influential factor is memorization of the training data. We show that models falsely label NLI test samples as entailing when the hypothesis is attested in the training text, regardless of the premise. We further show that named entity IDs are used as "indices" to access the memorized data. Second, we show that LLMs exploit a further corpus-based heuristic using the relative frequencies of words. We show that LLMs score significantly worse on NLI test samples which do not conform to these factors than those which do; we also discuss a tension between the two factors, and a performance trade-off.

View on arXiv
Comments on this paper