Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.16202
Cited By
DP-SGD Without Clipping: The Lipschitz Neural Network Way
25 May 2023
Louis Bethune
Thomas Massena
Thibaut Boissin
Yannick Prudent
Corentin Friedrich
Franck Mamalet
A. Bellet
M. Serrurier
David Vigouroux
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DP-SGD Without Clipping: The Lipschitz Neural Network Way"
8 / 8 papers shown
Title
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
165
0
01 Mar 2023
Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy
Zhiqi Bu
J. Mao
Shiyun Xu
131
47
0
21 May 2022
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
123
118
0
07 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
144
347
0
25 Sep 2021
An automatic differentiation system for the age of differential privacy
Dmitrii Usynin
Alexander Ziller
Moritz Knolle
Andrew Trask
Kritika Prakash
Daniel Rueckert
Georgios Kaissis
18
3
0
22 Sep 2021
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
239
2,554
0
04 May 2021
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
128
178
0
28 Jul 2020
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
185
357
0
24 Mar 2020
1