Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.18443
Cited By
Off-Policy RL Algorithms Can be Sample-Efficient for Continuous Control via Sample Multiple Reuse
29 May 2023
Jiafei Lyu
Le Wan
Zongqing Lu
Xiu Li
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Off-Policy RL Algorithms Can be Sample-Efficient for Continuous Control via Sample Multiple Reuse"
6 / 6 papers shown
Title
Novelty-based Sample Reuse for Continuous Robotics Control
Ke Duan
Kai Yang
Houde Liu
Xueqian Wang
24
0
0
17 Oct 2024
Cross-Domain Policy Adaptation by Capturing Representation Mismatch
Jiafei Lyu
Chenjia Bai
Jingwen Yang
Zongqing Lu
Xiu Li
23
8
0
24 May 2024
Revisiting Plasticity in Visual Reinforcement Learning: Data, Modules and Training Stages
Guozheng Ma
Lu Li
Sen Zhang
Zixuan Liu
Zhen Wang
Yixin Chen
Li Shen
Xueqian Wang
Dacheng Tao
OffRL
45
14
0
11 Oct 2023
The Primacy Bias in Deep Reinforcement Learning
Evgenii Nikishin
Max Schwarzer
P. DÓro
Pierre-Luc Bacon
Aaron C. Courville
OnRL
85
178
0
16 May 2022
Softmax Deep Double Deterministic Policy Gradients
Ling Pan
Qingpeng Cai
Longbo Huang
72
86
0
19 Oct 2020
Controlling Overestimation Bias with Truncated Mixture of Continuous Distributional Quantile Critics
Arsenii Kuznetsov
Pavel Shvechikov
Alexander Grishin
Dmitry Vetrov
136
184
0
08 May 2020
1