Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.18465
Cited By
Federated Learning of Gboard Language Models with Differential Privacy
29 May 2023
Zheng Xu
Yanxiang Zhang
Galen Andrew
Christopher A. Choquette-Choo
Peter Kairouz
H. B. McMahan
Jesse Rosenstock
Yuanbo Zhang
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Learning of Gboard Language Models with Differential Privacy"
50 / 61 papers shown
Title
UnifyFL: Enabling Decentralized Cross-Silo Federated Learning
Sarang S
Druva Dhakshinamoorthy
Aditya Shiva Sharma
Yuvraj Singh Bhadauria
Siddharth Chaitra Vivek
Arihant Bansal
Arnab K. Paul
FedML
31
0
0
26 Apr 2025
Private Federated Learning using Preference-Optimized Synthetic Data
Charlie Hou
Mei-Yu Wang
Yige Zhu
Daniel Lazar
Giulia Fanti
FedML
Presented at
ResearchTrend Connect | FedML
on
07 May 2025
57
0
0
23 Apr 2025
Accelerating Differentially Private Federated Learning via Adaptive Extrapolation
Shokichi Takakura
Seng Pei Liew
Satoshi Hasegawa
FedML
30
0
0
14 Apr 2025
Infinitely Divisible Noise for Differential Privacy: Nearly Optimal Error in the High
ε
\varepsilon
ε
Regime
Charlie Harrison
Pasin Manurangsi
24
0
0
07 Apr 2025
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
62
0
0
16 Mar 2025
Synthesizing Privacy-Preserving Text Data via Finetuning without Finetuning Billion-Scale LLMs
Bowen Tan
Zheng Xu
Eric P. Xing
Zhiting Hu
Shanshan Wu
SyDa
85
0
0
16 Mar 2025
Multi-Agent Collaboration Mechanisms: A Survey of LLMs
Khanh-Tung Tran
Dung Dao
Minh-Duong Nguyen
Quoc-Viet Pham
Barry O’Sullivan
Hoang D. Nguyen
LLMAG
93
23
0
10 Jan 2025
Secure Stateful Aggregation: A Practical Protocol with Applications in Differentially-Private Federated Learning
Marshall Ball
James Bell-Clark
Adria Gascon
Peter Kairouz
Sewoong Oh
Zhiye Xie
FedML
26
0
0
15 Oct 2024
Federated Learning in Practice: Reflections and Projections
Katharine Daly
Hubert Eichner
Peter Kairouz
H. B. McMahan
Daniel Ramage
Zheng Xu
FedML
53
5
0
11 Oct 2024
Debiasing Federated Learning with Correlated Client Participation
Zhenyu Sun
Ziyang Zhang
Zheng Xu
Gauri Joshi
Pranay Sharma
Ermin Wei
FedML
24
0
0
02 Oct 2024
Byzantine-Robust Aggregation for Securing Decentralized Federated Learning
Diego Cajaraville-Aboy
Ana Fernández-Vilas
R. Redondo
Manuel Fernández-Veiga
18
2
0
26 Sep 2024
Scalable Differential Privacy Mechanisms for Real-Time Machine Learning Applications
Jessica Smith
David Williams
Emily Brown
21
0
0
16 Sep 2024
A Statistical Viewpoint on Differential Privacy: Hypothesis Testing, Representation and Blackwell's Theorem
Weijie J. Su
23
1
0
14 Sep 2024
A Hassle-free Algorithm for Private Learning in Practice: Don't Use Tree Aggregation, Use BLTs
H. B. McMahan
Zheng Xu
Yanxiang Zhang
FedML
32
5
0
16 Aug 2024
Federated Learning as a Service for Hierarchical Edge Networks with Heterogeneous Models
Wentao Gao
Omid Tavallaie
Shuaijun Chen
Albert Zomaya
FedML
25
3
0
30 Jul 2024
Universally Harmonizing Differential Privacy Mechanisms for Federated Learning: Boosting Accuracy and Convergence
Shuya Feng
Meisam Mohammady
Hanbin Hong
Shenao Yan
Ashish Kundu
Binghui Wang
Yuan Hong
FedML
34
3
0
20 Jul 2024
Fine-Tuning Large Language Models with User-Level Differential Privacy
Zachary Charles
Arun Ganesh
Ryan McKenna
H. B. McMahan
Nicole Mitchell
Krishna Pillutla
Keith Rush
21
11
0
10 Jul 2024
Synergizing Foundation Models and Federated Learning: A Survey
Shenghui Li
Fanghua Ye
Meng Fang
Jiaxu Zhao
Yun-Hin Chan
Edith C. -H. Ngai
Thiemo Voigt
AI4CE
43
5
0
18 Jun 2024
Empirical Guidelines for Deploying LLMs onto Resource-constrained Edge Devices
Ruiyang Qin
Dancheng Liu
Zheyu Yan
Zhaoxuan Tan
Zixuan Pan
Zhenge Jia
Meng-Long Jiang
Ahmed Abbasi
Jinjun Xiong
Yiyu Shi
51
10
0
06 Jun 2024
PrE-Text: Training Language Models on Private Federated Data in the Age of LLMs
Charlie Hou
Akshat Shrivastava
Hongyuan Zhan
Rylan Conway
Trang Le
Adithya Sagar
Giulia Fanti
Daniel Lazar
24
8
0
05 Jun 2024
DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under Differentially Private Federated Learning using Dynamic Low-Rank Adaptation
Jie Xu
Karthikeyan P. Saravanan
Rogier van Dalen
Haaris Mehmood
David Tuckey
Mete Ozay
56
5
0
10 May 2024
Improved Communication-Privacy Trade-offs in
L
2
L_2
L
2
Mean Estimation under Streaming Differential Privacy
Wei-Ning Chen
Berivan Isik
Peter Kairouz
Albert No
Sewoong Oh
Zheng Xu
41
3
0
02 May 2024
Efficient and Near-Optimal Noise Generation for Streaming Differential Privacy
Krishnamurthy Dvijotham
H. B. McMahan
Krishna Pillutla
Thomas Steinke
Abhradeep Thakurta
35
10
0
25 Apr 2024
Confidential Federated Computations
Hubert Eichner
Daniel Ramage
Kallista A. Bonawitz
Dzmitry Huba
Tiziano Santoro
...
Albert Cheu
Katharine Daly
Adria Gascon
Marco Gruteser
Brendan McMahan
35
2
0
16 Apr 2024
pfl-research: simulation framework for accelerating research in Private Federated Learning
Filip Granqvist
Congzheng Song
Áine Cahill
Rogier van Dalen
Martin Pelikan
Yi Sheng Chan
Xiaojun Feng
Natarajan Krishnaswami
Vojta Jina
Mona Chitnis
FedML
26
5
0
09 Apr 2024
Prompt Public Large Language Models to Synthesize Data for Private On-device Applications
Shanshan Wu
Zheng Xu
Yanxiang Zhang
Yuanbo Zhang
Daniel Ramage
SyDa
21
9
0
05 Apr 2024
Efficient Language Model Architectures for Differentially Private Federated Learning
Jae Hun Ro
Srinadh Bhojanapalli
Zheng Xu
Yanxiang Zhang
A. Suresh
FedML
39
2
0
12 Mar 2024
Differentially Private Knowledge Distillation via Synthetic Text Generation
James Flemings
Murali Annavaram
SyDa
32
11
0
01 Mar 2024
Teach LLMs to Phish: Stealing Private Information from Language Models
Ashwinee Panda
Christopher A. Choquette-Choo
Zhengming Zhang
Yaoqing Yang
Prateek Mittal
PILM
21
20
0
01 Mar 2024
Private Gradient Descent for Linear Regression: Tighter Error Bounds and Instance-Specific Uncertainty Estimation
Gavin Brown
Krishnamurthy Dvijotham
Georgina Evans
Daogao Liu
Adam D. Smith
Abhradeep Thakurta
34
3
0
21 Feb 2024
Auditing Private Prediction
Karan Chadha
Matthew Jagielski
Nicolas Papernot
Christopher A. Choquette-Choo
Milad Nasr
30
4
0
14 Feb 2024
Momentum Approximation in Asynchronous Private Federated Learning
Tao Yu
Congzheng Song
Jianyu Wang
Mona Chitnis
FedML
30
1
0
14 Feb 2024
A Survey on Efficient Federated Learning Methods for Foundation Model Training
Herbert Woisetschläger
Alexander Isenko
Shiqiang Wang
R. Mayer
Hans-Arno Jacobsen
FedML
55
23
0
09 Jan 2024
Lotto: Secure Participant Selection against Adversarial Servers in Federated Learning
Zhifeng Jiang
Peng Ye
Shiqi He
Wei Wang
Ruichuan Chen
Bo Li
11
2
0
05 Jan 2024
Venn: Resource Management for Collaborative Learning Jobs
Jiachen Liu
Fan Lai
Ding Ding
Yiwen Zhang
Mosharaf Chowdhury
FedML
42
1
0
13 Dec 2023
Grounding Foundation Models through Federated Transfer Learning: A General Framework
Yan Kang
Tao Fan
Hanlin Gu
Xiaojin Zhang
Lixin Fan
Qiang Yang
AI4CE
68
19
0
29 Nov 2023
Enabling On-Device Large Language Model Personalization with Self-Supervised Data Selection and Synthesis
Ruiyang Qin
Jun Xia
Zhenge Jia
Meng-Long Jiang
Ahmed Abbasi
Peipei Zhou
Jingtong Hu
Yiyu Shi
24
18
0
21 Nov 2023
Robust and Actively Secure Serverless Collaborative Learning
Olive Franzese
Adam Dziedzic
Christopher A. Choquette-Choo
Mark R. Thomas
Muhammad Ahmad Kaleem
Stephan Rabanser
Cong Fang
Somesh Jha
Nicolas Papernot
Xiao Wang
OOD
17
2
0
25 Oct 2023
FedTherapist: Mental Health Monitoring with User-Generated Linguistic Expressions on Smartphones via Federated Learning
Jaemin Shin
Hyungjun Yoon
Seungjoo Lee
Sungjoon Park
Yunxin Liu
Jinho D. Choi
Sung-Ju Lee
17
5
0
25 Oct 2023
User Inference Attacks on Large Language Models
Nikhil Kandpal
Krishna Pillutla
Alina Oprea
Peter Kairouz
Christopher A. Choquette-Choo
Zheng Xu
SILM
AAML
28
15
0
13 Oct 2023
Optimization of Federated Learning's Client Selection for Non-IID Data Based on Grey Relational Analysis
Shuaijun Chen
Omid Tavallaie
Michael Henri Hambali
S. M. Zandavi
Hamed Haddadi
Nicholas D. Lane
Song Guo
Albert Y. Zomaya
FedML
21
1
0
12 Oct 2023
Correlated Noise Provably Beats Independent Noise for Differentially Private Learning
Christopher A. Choquette-Choo
Krishnamurthy Dvijotham
Krishna Pillutla
Arun Ganesh
Thomas Steinke
Abhradeep Thakurta
17
13
0
10 Oct 2023
Federated Learning with Differential Privacy for End-to-End Speech Recognition
Martin Pelikan
Sheikh Shams Azam
Vitaly Feldman
Jan Honza Silovsky
Kunal Talwar
Tatiana Likhomanenko
30
7
0
29 Sep 2023
How to Protect Copyright Data in Optimization of Large Language Models?
T. Chu
Zhao-quan Song
Chiwun Yang
28
29
0
23 Aug 2023
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
22
11
0
11 Aug 2023
When Federated Learning meets Watermarking: A Comprehensive Overview of Techniques for Intellectual Property Protection
Mohammed Lansari
R. Bellafqira
K. Kapusta
V. Thouvenot
Olivier Bettan
G. Coatrieux
FedML
23
15
0
07 Aug 2023
Samplable Anonymous Aggregation for Private Federated Data Analysis
Kunal Talwar
Shan Wang
Audra McMillan
Vojta Jina
Vitaly Feldman
...
Congzheng Song
Karl Tarbe
Sebastian Vogt
L. Winstrom
Shundong Zhou
FedML
28
13
0
27 Jul 2023
Private Federated Learning with Autotuned Compression
Enayat Ullah
Christopher A. Choquette-Choo
Peter Kairouz
Sewoong Oh
FedML
15
6
0
20 Jul 2023
Private Federated Learning in Gboard
Yuanbo Zhang
Daniel Ramage
Zheng Xu
Yanxiang Zhang
Shumin Zhai
Peter Kairouz
FedML
17
7
0
26 Jun 2023
(Amplified) Banded Matrix Factorization: A unified approach to private training
Christopher A. Choquette-Choo
Arun Ganesh
Ryan McKenna
H. B. McMahan
Keith Rush
Abhradeep Thakurta
Zheng Xu
FedML
15
35
0
13 Jun 2023
1
2
Next