Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.19454
Cited By
Dynamic Sparsity Is Channel-Level Sparsity Learner
30 May 2023
Lu Yin
Gen Li
Meng Fang
Lijuan Shen
Tianjin Huang
Zhangyang Wang
Vlado Menkovski
Xiaolong Ma
Mykola Pechenizkiy
Shiwei Liu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dynamic Sparsity Is Channel-Level Sparsity Learner"
7 / 7 papers shown
Title
Pushing the Limits of Sparsity: A Bag of Tricks for Extreme Pruning
Andy Li
A. Durrant
Milan Markovic
Lu Yin
Georgios Leontidis
Tianlong Chen
Lu Yin
Georgios Leontidis
75
0
0
20 Nov 2024
S-STE: Continuous Pruning Function for Efficient 2:4 Sparse Pre-training
Yuezhou Hu
Jun-Jie Zhu
Jianfei Chen
36
0
0
13 Sep 2024
Powerpropagation: A sparsity inducing weight reparameterisation
Jonathan Richard Schwarz
Siddhant M. Jayakumar
Razvan Pascanu
P. Latham
Yee Whye Teh
87
54
0
01 Oct 2021
Carbon Emissions and Large Neural Network Training
David A. Patterson
Joseph E. Gonzalez
Quoc V. Le
Chen Liang
Lluís-Miquel Munguía
D. Rothchild
David R. So
Maud Texier
J. Dean
AI4CE
244
643
0
21 Apr 2021
Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks
Itay Hubara
Brian Chmiel
Moshe Island
Ron Banner
S. Naor
Daniel Soudry
46
110
0
16 Feb 2021
SCOP: Scientific Control for Reliable Neural Network Pruning
Yehui Tang
Yunhe Wang
Yixing Xu
Dacheng Tao
Chunjing Xu
Chao Xu
Chang Xu
AAML
41
166
0
21 Oct 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
228
4,460
0
23 Jan 2020
1