Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.00434
Cited By
Divide, Conquer, and Combine: Mixture of Semantic-Independent Experts for Zero-Shot Dialogue State Tracking
1 June 2023
Qingyue Wang
Liang Ding
Yanan Cao
Yibing Zhan
Zheng Lin
Shi Wang
Dacheng Tao
Li Guo
MoMe
MoE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Divide, Conquer, and Combine: Mixture of Semantic-Independent Experts for Zero-Shot Dialogue State Tracking"
8 / 8 papers shown
Title
Distilled Transformers with Locally Enhanced Global Representations for Face Forgery Detection
Yaning Zhang
Qiufu Li
Zitong Yu
L. Shen
ViT
45
3
0
31 Dec 2024
Diverse and Effective Synthetic Data Generation for Adaptable Zero-Shot Dialogue State Tracking
James D. Finch
Jinho D. Choi
29
0
0
21 May 2024
MoPE: Mixture of Prefix Experts for Zero-Shot Dialogue State Tracking
Tianwen Tang
Tong Zhu
Haodong Liu
Yin Bai
Jia Cheng
Wenliang Chen
MoE
19
0
0
12 Apr 2024
Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer
Boan Liu
Liang Ding
Li Shen
Keqin Peng
Yu Cao
Dazhao Cheng
Dacheng Tao
MoE
34
7
0
15 Oct 2023
Towards Making the Most of ChatGPT for Machine Translation
Keqin Peng
Liang Ding
Qihuang Zhong
Li Shen
Xuebo Liu
Min Zhang
Y. Ouyang
Dacheng Tao
LRM
83
203
0
24 Mar 2023
Single-dataset Experts for Multi-dataset Question Answering
Dan Friedman
Ben Dodge
Danqi Chen
MoMe
121
26
0
28 Sep 2021
Slot Self-Attentive Dialogue State Tracking
Fanghua Ye
Jarana Manotumruksa
Qiang Zhang
Shenghui Li
Emine Yilmaz
30
63
0
22 Jan 2021
Semantics Disentangling for Generalized Zero-Shot Learning
Zhi Chen
Yadan Luo
Ruihong Qiu
Sen Wang
Zi Huang
Jingjing Li
Zheng-Wei Zhang
68
98
0
20 Jan 2021
1