ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.00753
  4. Cited By
Robust T-Loss for Medical Image Segmentation

Robust T-Loss for Medical Image Segmentation

1 June 2023
Alvaro Gonzalez-Jimenez
Simone Lionetti
Philippe Gottfrois
Fabian Gröger
Marc Pouly
Alexander A. Navarini
    OOD
ArXivPDFHTML

Papers citing "Robust T-Loss for Medical Image Segmentation"

7 / 7 papers shown
Title
Segmentation with Noisy Labels via Spatially Correlated Distributions
Segmentation with Noisy Labels via Spatially Correlated Distributions
Ryu Tadokoro
Tsukasa Takagi
Shin-ichi Maeda
24
0
0
21 Apr 2025
EndoOmni: Zero-Shot Cross-Dataset Depth Estimation in Endoscopy by Robust Self-Learning from Noisy Labels
EndoOmni: Zero-Shot Cross-Dataset Depth Estimation in Endoscopy by Robust Self-Learning from Noisy Labels
Qingyao Tian
Zhen Chen
Huai Liao
Xinyan Huang
Lujie Li
Sebastien Ourselin
Hongbin Liu
95
1
0
09 Sep 2024
D-MASTER: Mask Annealed Transformer for Unsupervised Domain Adaptation
  in Breast Cancer Detection from Mammograms
D-MASTER: Mask Annealed Transformer for Unsupervised Domain Adaptation in Breast Cancer Detection from Mammograms
Tajamul Ashraf
K. Rangarajan
Mohit Gambhir
Richa Gabha
Chetan Arora
MedIm
44
1
0
09 Jul 2024
Hyperbolic Metric Learning for Visual Outlier Detection
Hyperbolic Metric Learning for Visual Outlier Detection
Alvaro Gonzalez-Jimenez
Simone Lionetti
Dena Bazazian
Philippe Gottfrois
Fabian Gröger
Marc Pouly
Alexander A. Navarini
59
1
0
22 Mar 2024
Loss Functions in the Era of Semantic Segmentation: A Survey and Outlook
Loss Functions in the Era of Semantic Segmentation: A Survey and Outlook
Reza Azad
Moein Heidary
Kadir Yilmaz
Michael Huttemann
Sanaz Karimijafarbigloo
Yuli Wu
Anke Schmeink
Dorit Merhof
VLM
SSeg
39
17
0
08 Dec 2023
Evaluating Deep Neural Networks Trained on Clinical Images in
  Dermatology with the Fitzpatrick 17k Dataset
Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset
Matthew Groh
Caleb Harris
L. Soenksen
Felix Lau
Rachel Han
Aerin Kim
A. Koochek
Omar Badri
112
182
0
20 Apr 2021
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
295
10,618
0
19 Feb 2017
1