Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.01322
Cited By
Privacy Distillation: Reducing Re-identification Risk of Multimodal Diffusion Models
2 June 2023
Virginia Fernandez
Pedro Sanchez
W. H. Pinaya
Grzegorz Jacenków
Sotirios A. Tsaftaris
Jorge Cardoso
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Privacy Distillation: Reducing Re-identification Risk of Multimodal Diffusion Models"
7 / 7 papers shown
Title
Attacks and Defenses for Generative Diffusion Models: A Comprehensive Survey
V. T. Truong
Luan Ba Dang
Long Bao Le
DiffM
MedIm
38
14
0
06 Aug 2024
White-box Membership Inference Attacks against Diffusion Models
Yan Pang
Tianhao Wang
Xu Kang
Mengdi Huai
Yang Zhang
AAML
DiffM
18
22
0
11 Aug 2023
Can segmentation models be trained with fully synthetically generated data?
Virginia Fernandez
W. H. Pinaya
Pedro Borges
Petru-Daniel Tudosiu
M. Graham
Tom Kamiel Magda Vercauteren
M. Jorge Cardoso
DiffM
MedIm
35
44
0
17 Sep 2022
Brain Imaging Generation with Latent Diffusion Models
W. H. Pinaya
Petru-Daniel Tudosiu
J. Dafflon
P. F. D. Costa
Virginia Fernandez
P. Nachev
Sebastien Ourselin
M. Jorge Cardoso
DiffM
MedIm
87
275
0
15 Sep 2022
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
253
4,735
0
24 Feb 2021
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models
Ahmed Alaa
B. V. Breugel
Evgeny S. Saveliev
M. Schaar
38
135
0
17 Feb 2021
Synthetic Data: Opening the data floodgates to enable faster, more directed development of machine learning methods
James Jordon
A. Wilson
M. Schaar
AI4CE
64
16
0
08 Dec 2020
1