ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.01431
  4. Cited By
On Knowledge Editing in Federated Learning: Perspectives, Challenges,
  and Future Directions

On Knowledge Editing in Federated Learning: Perspectives, Challenges, and Future Directions

2 June 2023
Leijie Wu
Song Guo
Junxiao Wang
Zicong Hong
Jie M. Zhang
Jingren Zhou
    KELM
ArXivPDFHTML

Papers citing "On Knowledge Editing in Federated Learning: Perspectives, Challenges, and Future Directions"

7 / 7 papers shown
Title
CollabEdit: Towards Non-destructive Collaborative Knowledge Editing
CollabEdit: Towards Non-destructive Collaborative Knowledge Editing
Jiamu Zheng
Jinghuai Zhang
Tianyu Du
Xuhong Zhang
Jianwei Yin
Tao Lin
KELM
27
0
0
12 Oct 2024
A Comprehensive Study of Knowledge Editing for Large Language Models
A Comprehensive Study of Knowledge Editing for Large Language Models
Ningyu Zhang
Yunzhi Yao
Bo Tian
Peng Wang
Shumin Deng
...
Lei Liang
Zhiqiang Zhang
Xiao-Jun Zhu
Jun Zhou
Huajun Chen
KELM
26
76
0
02 Jan 2024
A Survey on Federated Unlearning: Challenges, Methods, and Future
  Directions
A Survey on Federated Unlearning: Challenges, Methods, and Future Directions
Ziyao Liu
Yu Jiang
Jiyuan Shen
Minyi Peng
Kwok-Yan Lam
Xingliang Yuan
Xiaoning Liu
MU
24
43
0
31 Oct 2023
LegoNet: A Fast and Exact Unlearning Architecture
LegoNet: A Fast and Exact Unlearning Architecture
Sihao Yu
Fei Sun
J. Guo
Ruqing Zhang
Xueqi Cheng
MU
26
7
0
28 Oct 2022
The Future of Digital Health with Federated Learning
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,698
0
18 Mar 2020
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Thomas Baumhauer
Pascal Schöttle
Matthias Zeppelzauer
MU
102
129
0
07 Feb 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,659
0
09 Mar 2017
1