ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.01435
  4. Cited By
Improving Adversarial Robustness of DEQs with Explicit Regulations Along
  the Neural Dynamics

Improving Adversarial Robustness of DEQs with Explicit Regulations Along the Neural Dynamics

2 June 2023
Zonghan Yang
Peng Li
Tianyu Pang
Yang Liu
    AAML
ArXivPDFHTML

Papers citing "Improving Adversarial Robustness of DEQs with Explicit Regulations Along the Neural Dynamics"

5 / 5 papers shown
Title
Certified Robustness for Deep Equilibrium Models via Serialized Random
  Smoothing
Certified Robustness for Deep Equilibrium Models via Serialized Random Smoothing
Weizhi Gao
Zhichao Hou
Han Xu
Xiaorui Liu
AAML
26
0
0
01 Nov 2024
TorchDEQ: A Library for Deep Equilibrium Models
TorchDEQ: A Library for Deep Equilibrium Models
Zhengyang Geng
J. Zico Kolter
VLM
44
12
0
28 Oct 2023
Evaluating the Adversarial Robustness of Adaptive Test-time Defenses
Evaluating the Adversarial Robustness of Adaptive Test-time Defenses
Francesco Croce
Sven Gowal
T. Brunner
Evan Shelhamer
Matthias Hein
A. Cemgil
TTA
AAML
170
67
0
28 Feb 2022
On Training Implicit Models
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
56
69
0
09 Nov 2021
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
217
674
0
19 Oct 2020
1