ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.01485
  4. Cited By
Robust low-rank training via approximate orthonormal constraints

Robust low-rank training via approximate orthonormal constraints

2 June 2023
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
ArXivPDFHTML

Papers citing "Robust low-rank training via approximate orthonormal constraints"

9 / 9 papers shown
Title
Low-Rank Adversarial PGD Attack
Low-Rank Adversarial PGD Attack
Dayana Savostianova
Emanuele Zangrando
Francesco Tudisco
AAML
23
0
0
16 Oct 2024
SLTrain: a sparse plus low-rank approach for parameter and memory
  efficient pretraining
SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining
Andi Han
Jiaxiang Li
Wei Huang
Mingyi Hong
Akiko Takeda
Pratik Jawanpuria
Bamdev Mishra
36
9
0
04 Jun 2024
Convolutional Neural Network Compression via Dynamic Parameter Rank
  Pruning
Convolutional Neural Network Compression via Dynamic Parameter Rank Pruning
Manish Sharma
Jamison Heard
Eli Saber
Panos P. Markopoulos
15
1
0
15 Jan 2024
Low-rank lottery tickets: finding efficient low-rank neural networks via
  matrix differential equations
Low-rank lottery tickets: finding efficient low-rank neural networks via matrix differential equations
Steffen Schotthöfer
Emanuele Zangrando
J. Kusch
Gianluca Ceruti
Francesco Tudisco
53
30
0
26 May 2022
Improved deterministic l2 robustness on CIFAR-10 and CIFAR-100
Improved deterministic l2 robustness on CIFAR-10 and CIFAR-100
Sahil Singla
Surbhi Singla
S. Feizi
AAML
30
54
0
05 Aug 2021
Initialization and Regularization of Factorized Neural Layers
Initialization and Regularization of Factorized Neural Layers
M. Khodak
Neil A. Tenenholtz
Lester W. Mackey
Nicolò Fusi
63
56
0
03 May 2021
Globally-Robust Neural Networks
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
80
125
0
16 Feb 2021
Fast and accurate optimization on the orthogonal manifold without
  retraction
Fast and accurate optimization on the orthogonal manifold without retraction
Pierre Ablin
Gabriel Peyré
51
26
0
15 Feb 2021
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
220
348
0
14 Jun 2018
1