ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.02149
  4. Cited By
A General Framework for Interpretable Neural Learning based on Local Information-Theoretic Goal Functions

A General Framework for Interpretable Neural Learning based on Local Information-Theoretic Goal Functions

3 June 2023
Abdullah Makkeh
Marcel Graetz
Andreas C. Schneider
David A. Ehrlich
V. Priesemann
Michael Wibral
ArXivPDFHTML

Papers citing "A General Framework for Interpretable Neural Learning based on Local Information-Theoretic Goal Functions"

3 / 3 papers shown
Title
Forward-Forward Contrastive Learning
Forward-Forward Contrastive Learning
Md. Atik Ahamed
Jin Chen
A. Imran
MedIm
15
6
0
04 May 2023
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
77
268
0
13 Jul 2021
Local plasticity rules can learn deep representations using
  self-supervised contrastive predictions
Local plasticity rules can learn deep representations using self-supervised contrastive predictions
Bernd Illing
Jean-Paul Ventura
G. Bellec
W. Gerstner
SSL
DRL
30
66
0
16 Oct 2020
1