312
v1v2v3 (latest)

Latent Optimal Paths by Gumbel Propagation for Variational Bayesian Dynamic Programming

International Conference on Machine Learning (ICML), 2023
Abstract

We propose the stochastic optimal path which solves the classical optimal path problem by a probability-softening solution. This unified approach transforms a wide range of DP problems into directed acyclic graphs in which all paths follow a Gibbs distribution. We show the equivalence of the Gibbs distribution to a message-passing algorithm by the properties of the Gumbel distribution and give all the ingredients required for variational Bayesian inference of a latent path, namely Bayesian dynamic programming (BDP). We demonstrate the usage of BDP in the latent space of variational autoencoders (VAEs) and propose the BDP-VAE which captures structured sparse optimal paths as latent variables. This enables end-to-end training for generative tasks in which models rely on unobserved structural information. At last, we validate the behavior of our approach and showcase its applicability in two real-world applications: text-to-speech and singing voice synthesis. Our implementation code is available at \url{https://github.com/XinleiNIU/LatentOptimalPathsBayesianDP}.

View on arXiv
Comments on this paper