ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.02797
8
16

Human-like Few-Shot Learning via Bayesian Reasoning over Natural Language

5 June 2023
Kevin Ellis
    BDL
    LRM
ArXivPDFHTML
Abstract

A core tension in models of concept learning is that the model must carefully balance the tractability of inference against the expressivity of the hypothesis class. Humans, however, can efficiently learn a broad range of concepts. We introduce a model of inductive learning that seeks to be human-like in that sense. It implements a Bayesian reasoning process where a language model first proposes candidate hypotheses expressed in natural language, which are then re-weighed by a prior and a likelihood. By estimating the prior from human data, we can predict human judgments on learning problems involving numbers and sets, spanning concepts that are generative, discriminative, propositional, and higher-order.

View on arXiv
Comments on this paper