ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.02842
  4. Cited By
Improving Conversational Recommendation Systems via Counterfactual Data
  Simulation

Improving Conversational Recommendation Systems via Counterfactual Data Simulation

5 June 2023
Xiaolei Wang
Kun Zhou
Xinyu Tang
Wayne Xin Zhao
Fan Pan
Zhao Cao
Ji-Rong Wen
ArXivPDFHTML

Papers citing "Improving Conversational Recommendation Systems via Counterfactual Data Simulation"

9 / 9 papers shown
Title
MATCHA: Can Multi-Agent Collaboration Build a Trustworthy Conversational Recommender?
MATCHA: Can Multi-Agent Collaboration Build a Trustworthy Conversational Recommender?
Zheng Hui
Xiaokai Wei
Yexi Jiang
Kevin Gao
Chen Wang
Frank Ong
Se-eun Yoon
Rachit Pareek
Michelle Gong
LLMAG
59
0
0
26 Apr 2025
Beyond Whole Dialogue Modeling: Contextual Disentanglement for Conversational Recommendation
Beyond Whole Dialogue Modeling: Contextual Disentanglement for Conversational Recommendation
Guojia An
Jie Zou
Jiwei Wei
Chaoning Zhang
Fuming Sun
Yang Yang
88
1
0
24 Apr 2025
Vague Preference Policy Learning for Conversational Recommendation
Vague Preference Policy Learning for Conversational Recommendation
Gangyi Zhang
Chongming Gao
Wenqiang Lei
Xiaojie Guo
Shijun Li
Hongshen Chen
Zhuozhi Ding
Sulong Xu
Lingfei Wu
68
1
0
24 Feb 2025
Beyond Persuasion: Towards Conversational Recommender System with
  Credible Explanations
Beyond Persuasion: Towards Conversational Recommender System with Credible Explanations
Peixin Qin
Chen Huang
Yang Deng
Wenqiang Lei
Tat-Seng Chua
LRM
25
3
0
22 Sep 2024
DIET: Customized Slimming for Incompatible Networks in Sequential
  Recommendation
DIET: Customized Slimming for Incompatible Networks in Sequential Recommendation
Kairui Fu
Shengyu Zhang
Zheqi Lv
Jingyuan Chen
Jiwei Li
26
2
0
13 Jun 2024
Rethinking the Evaluation for Conversational Recommendation in the Era
  of Large Language Models
Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models
Xiaolei Wang
Xinyu Tang
Wayne Xin Zhao
Jingyuan Wang
Ji-Rong Wen
ALM
23
47
0
22 May 2023
Bias Challenges in Counterfactual Data Augmentation
Bias Challenges in Counterfactual Data Augmentation
S Chandra Mouli
Yangze Zhou
Bruno Ribeiro
CML
OOD
OODD
37
4
0
12 Sep 2022
Augmenting Sequential Recommendation with Pseudo-Prior Items via
  Reversely Pre-training Transformer
Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer
Zhiwei Liu
Ziwei Fan
Yu Wang
Philip S. Yu
109
145
0
02 May 2021
Advances and Challenges in Conversational Recommender Systems: A Survey
Advances and Challenges in Conversational Recommender Systems: A Survey
Chongming Gao
Wenqiang Lei
Xiangnan He
Maarten de Rijke
Tat-Seng Chua
128
271
0
23 Jan 2021
1