Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.03440
Cited By
Quantifying the Variability Collapse of Neural Networks
6 June 2023
Jing-Xue Xu
Haoxiong Liu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Quantifying the Variability Collapse of Neural Networks"
9 / 9 papers shown
Title
Balancing Two Classifiers via A Simplex ETF Structure for Model Calibration
Jiani Ni
He Zhao
Jintong Gao
Dandan Guo
H. Zha
24
0
0
14 Apr 2025
MaxSup: Overcoming Representation Collapse in Label Smoothing
Yuxuan Zhou
Heng Li
Zhi-Qi Cheng
Xudong Yan
Mario Fritz
M. Keuper
36
0
0
18 Feb 2025
Relaxed Contrastive Learning for Federated Learning
Seonguk Seo
Jinkyu Kim
Geeho Kim
Bohyung Han
FedML
34
8
0
10 Jan 2024
Perturbation Analysis of Neural Collapse
Tom Tirer
Haoxiang Huang
Jonathan Niles-Weed
AAML
27
23
0
29 Oct 2022
Improving Self-Supervised Learning by Characterizing Idealized Representations
Yann Dubois
Tatsunori Hashimoto
Stefano Ermon
Percy Liang
SSL
59
40
0
13 Sep 2022
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
Rethinking Supervised Pre-training for Better Downstream Transferring
Yutong Feng
Jianwen Jiang
Mingqian Tang
R. L. Jin
Yue Gao
SSL
40
38
0
12 Oct 2021
An Unconstrained Layer-Peeled Perspective on Neural Collapse
Wenlong Ji
Yiping Lu
Yiliang Zhang
Zhun Deng
Weijie J. Su
122
83
0
06 Oct 2021
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training
Cong Fang
Hangfeng He
Qi Long
Weijie J. Su
FAtt
114
162
0
29 Jan 2021
1