ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.04922
  4. Cited By
Efficient and Equivariant Graph Networks for Predicting Quantum
  Hamiltonian
v1v2 (latest)

Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian

International Conference on Machine Learning (ICML), 2023
8 June 2023
Haiyang Yu
Zhao Xu
X. Qian
Xiaoning Qian
Shuiwang Ji
ArXiv (abs)PDFHTMLGithub (629★)

Papers citing "Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian"

9 / 9 papers shown
Title
Learning from the electronic structure of molecules across the periodic table
Learning from the electronic structure of molecules across the periodic table
Manasa Kaniselvan
Benjamin Kurt Miller
Meng Gao
Juno Nam
Daniel Levine
155
0
0
30 Sep 2025
Towards A Universally Transferable Acceleration Method for Density Functional Theory
Towards A Universally Transferable Acceleration Method for Density Functional Theory
Zhe Liu
Y. Ni
Zhichen Pu
Qiming Sun
Siyuan Liu
Wen Yan
162
0
0
30 Sep 2025
Advancing Universal Deep Learning for Electronic-Structure Hamiltonian Prediction of Materials
Advancing Universal Deep Learning for Electronic-Structure Hamiltonian Prediction of Materials
Shi Yin
Zujian Dai
Xinyang Pan
Lixin He
131
0
0
24 Sep 2025
Tensor Decomposition Networks for Fast Machine Learning Interatomic Potential Computations
Tensor Decomposition Networks for Fast Machine Learning Interatomic Potential Computations
Yuchao Lin
Cong Fu
Zachary Krueger
Haiyang Yu
Maho Nakata
Jianwen Xie
E. Küçükbenli
X. Qian
Shuiwang Ji
206
0
0
01 Jul 2025
High-order Equivariant Flow Matching for Density Functional Theory Hamiltonian Prediction
High-order Equivariant Flow Matching for Density Functional Theory Hamiltonian Prediction
Seongsu Kim
N. Kim
Dongwoo Kim
SungSoo Ahn
236
2
0
24 May 2025
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular SystemsInternational Conference on Learning Representations (ICLR), 2025
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Guoqing Liu
Yu Xie
Jia Zhang
Jia Zhang
Mark B. Gerstein
375
8
0
26 Feb 2025
Learning local equivariant representations for quantum operators
Learning local equivariant representations for quantum operatorsInternational Conference on Learning Representations (ICLR), 2024
Zhanghao Zhouyin
Zixi Gan
MingKang Liu
S. K. Pandey
Linfeng Zhang
Qiangqiang Gu
416
10
0
28 Jan 2025
NeuralSCF: Neural network self-consistent fields for density functional
  theory
NeuralSCF: Neural network self-consistent fields for density functional theory
Feitong Song
Ji Feng
152
2
0
22 Jun 2024
A Space Group Symmetry Informed Network for O(3) Equivariant Crystal
  Tensor Prediction
A Space Group Symmetry Informed Network for O(3) Equivariant Crystal Tensor Prediction
Keqiang Yan
Alexandra Saxton
Xiaofeng Qian
Xiaoning Qian
Shuiwang Ji
196
10
0
03 Jun 2024
1