ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.05955
  4. Cited By
Path Neural Networks: Expressive and Accurate Graph Neural Networks

Path Neural Networks: Expressive and Accurate Graph Neural Networks

9 June 2023
Gaspard Michel
Giannis Nikolentzos
J. Lutzeyer
Michalis Vazirgiannis
    GNN
ArXivPDFHTML

Papers citing "Path Neural Networks: Expressive and Accurate Graph Neural Networks"

21 / 21 papers shown
Title
NeuroTree: Hierarchical Functional Brain Pathway Decoding for Mental Health Disorders
NeuroTree: Hierarchical Functional Brain Pathway Decoding for Mental Health Disorders
Jun-En Ding
Dongsheng Luo
Anna Zilverstand
Feng Liu
47
0
0
26 Feb 2025
Graph Self-Supervised Learning with Learnable Structural and Positional Encodings
Graph Self-Supervised Learning with Learnable Structural and Positional Encodings
Asiri Wijesinghe
Hao Zhu
Piotr Koniusz
38
0
0
22 Feb 2025
Simple Path Structural Encoding for Graph Transformers
Simple Path Structural Encoding for Graph Transformers
Louis Airale
Antonio Longa
Mattia Rigon
Andrea Passerini
Roberto Passerone
90
0
0
13 Feb 2025
No Metric to Rule Them All: Toward Principled Evaluations of Graph-Learning Datasets
No Metric to Rule Them All: Toward Principled Evaluations of Graph-Learning Datasets
Corinna Coupette
Jeremy Wayland
Emily Simons
Bastian Alexander Rieck
68
1
0
04 Feb 2025
Finding path and cycle counting formulae in graphs with Deep Reinforcement Learning
Finding path and cycle counting formulae in graphs with Deep Reinforcement Learning
Jason Piquenot
Maxime Bérar
Pierre Héroux
Jean-Yves Ramel
R. Raveaux
Sébastien Adam
16
0
0
02 Oct 2024
NeuroPath: A Neural Pathway Transformer for Joining the Dots of Human
  Connectomes
NeuroPath: A Neural Pathway Transformer for Joining the Dots of Human Connectomes
Ziquan Wei
Tingting Dan
Jiaqi Ding
Guorong Wu
MedIm
31
0
0
26 Sep 2024
Scalable Graph Compressed Convolutions
Scalable Graph Compressed Convolutions
Junshu Sun
Chen Yang
Shuhui Wang
Qingming Huang
GNN
31
0
0
26 Jul 2024
Learning Long Range Dependencies on Graphs via Random Walks
Learning Long Range Dependencies on Graphs via Random Walks
Dexiong Chen
Till Hendrik Schulz
Karsten Borgwardt
24
2
0
05 Jun 2024
Spatio-Spectral Graph Neural Networks
Spatio-Spectral Graph Neural Networks
Simon Geisler
Arthur Kosmala
Daniel Herbst
Stephan Günnemann
42
7
0
29 May 2024
Weisfeiler and Leman Go Loopy: A New Hierarchy for Graph
  Representational Learning
Weisfeiler and Leman Go Loopy: A New Hierarchy for Graph Representational Learning
Raffaele Paolino
Sohir Maskey
Pascal Welke
Gitta Kutyniok
25
2
0
20 Mar 2024
Message Detouring: A Simple Yet Effective Cycle Representation for
  Expressive Graph Learning
Message Detouring: A Simple Yet Effective Cycle Representation for Expressive Graph Learning
Ziquan Wei
Tingting Dan
Guorong Wu
19
0
0
12 Feb 2024
Improving Subgraph-GNNs via Edge-Level Ego-Network Encodings
Improving Subgraph-GNNs via Edge-Level Ego-Network Encodings
Nurudin Alvarez-Gonzalez
Andreas Kaltenbrunner
Vicencc Gómez
5
2
0
10 Dec 2023
Recurrent Distance Filtering for Graph Representation Learning
Recurrent Distance Filtering for Graph Representation Learning
Yuhui Ding
Antonio Orvieto
Bobby He
Thomas Hofmann
GNN
27
6
0
03 Dec 2023
Non-backtracking Graph Neural Networks
Non-backtracking Graph Neural Networks
Seonghyun Park
Narae Ryu
Ga-Rin Kim
Dongyeop Woo
Se-Young Yun
Sungsoo Ahn
22
4
0
11 Oct 2023
On the Two Sides of Redundancy in Graph Neural Networks
On the Two Sides of Redundancy in Graph Neural Networks
Vidya Sagar Sharma
Samir Moustafa
Johannes Langguth
Wilfried N. Gansterer
Nils M. Kriege
16
1
0
06 Oct 2023
Geodesic Graph Neural Network for Efficient Graph Representation
  Learning
Geodesic Graph Neural Network for Efficient Graph Representation Learning
Lecheng Kong
Yixin Chen
Muhan Zhang
GNN
AI4CE
83
21
0
06 Oct 2022
Reconstruction for Powerful Graph Representations
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
117
78
0
01 Oct 2021
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond
  Message Passing
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
Jan Toenshoff
Martin Ritzert
Hinrikus Wolf
Martin Grohe
GNN
73
21
0
17 Feb 2021
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
178
907
0
02 Mar 2020
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
154
1,748
0
02 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
1