ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.06101
17
54

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

9 June 2023
Konstantin Mishchenko
Aaron Defazio
    ODL
ArXivPDFHTML
Abstract

We consider the problem of estimating the learning rate in adaptive methods, such as AdaGrad and Adam. We propose Prodigy, an algorithm that provably estimates the distance to the solution DDD, which is needed to set the learning rate optimally. At its core, Prodigy is a modification of the D-Adaptation method for learning-rate-free learning. It improves upon the convergence rate of D-Adaptation by a factor of O(log⁡(D/d0))O(\sqrt{\log(D/d_0)})O(log(D/d0​)​), where d0d_0d0​ is the initial estimate of DDD. We test Prodigy on 12 common logistic-regression benchmark datasets, VGG11 and ResNet-50 training on CIFAR10, ViT training on Imagenet, LSTM training on IWSLT14, DLRM training on Criteo dataset, VarNet on Knee MRI dataset, as well as RoBERTa and GPT transformer training on BookWiki. Our experimental results show that our approach consistently outperforms D-Adaptation and reaches test accuracy values close to that of hand-tuned Adam.

View on arXiv
Comments on this paper