ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.06482
  4. Cited By
TensorNet: Cartesian Tensor Representations for Efficient Learning of
  Molecular Potentials

TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials

10 June 2023
Guillem Simeon
Gianni de Fabritiis
ArXivPDFHTML

Papers citing "TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials"

8 / 8 papers shown
Title
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
31
0
0
04 Apr 2025
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Bin Shao
Mark B. Gerstein
68
0
0
26 Feb 2025
Learning local equivariant representations for quantum operators
Learning local equivariant representations for quantum operators
Zhanghao Zhouyin
Zixi Gan
MingKang Liu
S. K. Pandey
Linfeng Zhang
Qiangqiang Gu
70
2
0
28 Jan 2025
PlayMolecule pKAce: Small Molecule Protonation through Equivariant
  Neural Networks
PlayMolecule pKAce: Small Molecule Protonation through Equivariant Neural Networks
Nikolai Schapin
Maciej Majewski
Mariona Torrens-Fontanals
Gianni de Fabritiis
19
1
0
15 Jul 2024
Grappa -- A Machine Learned Molecular Mechanics Force Field
Grappa -- A Machine Learned Molecular Mechanics Force Field
Leif Seute
Eric Hartmann
Jan Stühmer
Frauke Gräter
27
3
0
25 Mar 2024
SPICE, A Dataset of Drug-like Molecules and Peptides for Training
  Machine Learning Potentials
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni de Fabritiis
T. Markland
24
105
0
21 Sep 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
166
1,095
0
27 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
1