Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2306.06968
Cited By
Can Forward Gradient Match Backpropagation?
International Conference on Machine Learning (ICML), 2023
12 June 2023
Louis Fournier
Stéphane Rivaud
Eugene Belilovsky
Michael Eickenberg
Edouard Oyallon
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Can Forward Gradient Match Backpropagation?"
9 / 9 papers shown
Title
Towards Scalable Backpropagation-Free Gradient Estimation
Daniel Wang
Evan Markou
Dylan Campbell
56
0
0
05 Nov 2025
A Unified Perspective on Optimization in Machine Learning and Neuroscience: From Gradient Descent to Neural Adaptation
Jesus Garcia Fernandez
Nasir Ahmad
Marcel van Gerven
AI4CE
225
0
0
21 Oct 2025
Low-rank surrogate modeling and stochastic zero-order optimization for training of neural networks with black-box layers
Andrei Chertkov
Artem Basharin
Mikhail Saygin
Evgeny Frolov
Stanislav Straupe
Ivan Oseledets
126
0
0
18 Sep 2025
TITAN-Guide: Taming Inference-Time AligNment for Guided Text-to-Video Diffusion Models
Christian Simon
Masato Ishii
Akio Hayakawa
Zhi-Wei Zhong
Shusuke Takahashi
Takashi Shibuya
Yuki Mitsufuji
110
1
0
01 Aug 2025
Backpropagation-Free Metropolis-Adjusted Langevin Algorithm
Adam Cobb
Susmit Jha
141
0
0
23 May 2025
Beyond Backpropagation: Optimization with Multi-Tangent Forward Gradients
Katharina Flügel
D. Coquelin
Marie Weiel
Achim Streit
Markus Gotz
231
2
0
23 Oct 2024
PETRA: Parallel End-to-end Training with Reversible Architectures
Stéphane Rivaud
Louis Fournier
Thomas Pumir
Eugene Belilovsky
Michael Eickenberg
Edouard Oyallon
307
3
0
04 Jun 2024
Cyclic Data Parallelism for Efficient Parallelism of Deep Neural Networks
Louis Fournier
Edouard Oyallon
206
0
0
13 Mar 2024
Scaling Supervised Local Learning with Augmented Auxiliary Networks
Chenxiang Ma
Jibin Wu
Chenyang Si
Kay Chen Tan
194
6
0
27 Feb 2024
1