ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.08757
  4. Cited By
InfoDiffusion: Representation Learning Using Information Maximizing
  Diffusion Models

InfoDiffusion: Representation Learning Using Information Maximizing Diffusion Models

14 June 2023
Yingheng Wang
Yair Schiff
Aaron Gokaslan
Weishen Pan
Fei Wang
Chris De Sa
Volodymyr Kuleshov
    DiffM
ArXivPDFHTML

Papers citing "InfoDiffusion: Representation Learning Using Information Maximizing Diffusion Models"

13 / 13 papers shown
Title
Revisiting Diffusion Autoencoder Training for Image Reconstruction Quality
Revisiting Diffusion Autoencoder Training for Image Reconstruction Quality
Pramook Khungurn
Sukit Seripanitkarn
Phonphrm Thawatdamrongkit
Supasorn Suwajanakorn
DiffM
68
0
0
30 Apr 2025
Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models
Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models
Marianne Arriola
Aaron Gokaslan
Justin T Chiu
Zhihan Yang
Zhixuan Qi
Jiaqi Han
S. Sahoo
Volodymyr Kuleshov
DiffM
67
4
0
12 Mar 2025
Unsupervised Representation Learning from Sparse Transformation Analysis
Unsupervised Representation Learning from Sparse Transformation Analysis
Yue Song
Thomas Anderson Keller
Yisong Yue
Pietro Perona
Max Welling
DRL
29
0
0
07 Oct 2024
Diffusion-Based Generation of Neural Activity from Disentangled Latent
  Codes
Diffusion-Based Generation of Neural Activity from Disentangled Latent Codes
Jonathan D. McCart
Andrew R. Sedler
Christopher Versteeg
Domenick M. Mifsud
Mattia Rigotti-Thompson
C. Pandarinath
DiffM
SyDa
23
1
0
30 Jul 2024
Diffusion Bridge AutoEncoders for Unsupervised Representation Learning
Diffusion Bridge AutoEncoders for Unsupervised Representation Learning
Yeongmin Kim
Kwanghyeon Lee
Minsang Park
Byeonghu Na
Il-Chul Moon
DiffM
42
2
0
27 May 2024
ParamReL: Learning Parameter Space Representation via Progressively
  Encoding Bayesian Flow Networks
ParamReL: Learning Parameter Space Representation via Progressively Encoding Bayesian Flow Networks
Zhangkai Wu
Xuhui Fan
Jin Li
Zhilin Zhao
Hui Chen
LongBing Cao
44
2
0
24 May 2024
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Wasu Top Piriyakulkij
Yingheng Wang
Volodymyr Kuleshov
DiffM
30
1
0
05 Jan 2024
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Biwei Huang
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
45
11
0
29 Jan 2023
NashAE: Disentangling Representations through Adversarial Covariance
  Minimization
NashAE: Disentangling Representations through Adversarial Covariance Minimization
Eric C. Yeats
Frank Liu
David A. P. Womble
Hai Helen Li
CML
38
10
0
21 Sep 2022
Diffusion Models: A Comprehensive Survey of Methods and Applications
Diffusion Models: A Comprehensive Survey of Methods and Applications
Ling Yang
Zhilong Zhang
Yingxia Shao
Shenda Hong
Runsheng Xu
Yue Zhao
Wentao Zhang
Bin Cui
Ming-Hsuan Yang
DiffM
MedIm
224
1,296
0
02 Sep 2022
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
303
5,761
0
29 Apr 2021
Improved Baselines with Momentum Contrastive Learning
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
238
3,367
0
09 Mar 2020
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
262
10,344
0
12 Dec 2018
1