ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.08913
  4. Cited By
Advancing Volumetric Medical Image Segmentation via Global-Local Masked
  Autoencoder

Advancing Volumetric Medical Image Segmentation via Global-Local Masked Autoencoder

15 June 2023
Jiafan Zhuang
Luyang Luo
Hao Chen
ArXivPDFHTML

Papers citing "Advancing Volumetric Medical Image Segmentation via Global-Local Masked Autoencoder"

10 / 10 papers shown
Title
Revisiting MAE pre-training for 3D medical image segmentation
Revisiting MAE pre-training for 3D medical image segmentation
Tassilo Wald
Constantin Ulrich
Stanislav Lukyanenko
Andrei Goncharov
Alberto Paderno
Leander Maerkisch
Paul F. Jäger
Paul F. Jäger
Klaus Maier-Hein
47
2
0
30 Oct 2024
MiM: Mask in Mask Self-Supervised Pre-Training for 3D Medical Image Analysis
MiM: Mask in Mask Self-Supervised Pre-Training for 3D Medical Image Analysis
Jiaxin Zhuang
Linshan Wu
Qiong Wang
V. Vardhanabhuti
Lin Luo
Hao Chen
Hao Chen
57
4
0
24 Apr 2024
How to build the best medical image segmentation algorithm using foundation models: a comprehensive empirical study with Segment Anything Model
How to build the best medical image segmentation algorithm using foundation models: a comprehensive empirical study with Segment Anything Model
Han Gu
Haoyu Dong
Jichen Yang
Maciej Mazurowski
MedIm
VLM
80
12
0
15 Apr 2024
The effectiveness of MAE pre-pretraining for billion-scale pretraining
The effectiveness of MAE pre-pretraining for billion-scale pretraining
Mannat Singh
Quentin Duval
Kalyan Vasudev Alwala
Haoqi Fan
Vaibhav Aggarwal
...
Piotr Dollár
Christoph Feichtenhofer
Ross B. Girshick
Rohit Girdhar
Ishan Misra
LRM
113
63
0
23 Mar 2023
PCRLv2: A Unified Visual Information Preservation Framework for
  Self-supervised Pre-training in Medical Image Analysis
PCRLv2: A Unified Visual Information Preservation Framework for Self-supervised Pre-training in Medical Image Analysis
Hong-Yu Zhou
Chi-Ken Lu
Chaoqi Chen
Sibei Yang
Yizhou Yu
42
53
0
02 Jan 2023
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
305
7,434
0
11 Nov 2021
Preservational Learning Improves Self-supervised Medical Image Models by
  Reconstructing Diverse Contexts
Preservational Learning Improves Self-supervised Medical Image Models by Reconstructing Diverse Contexts
Hong-Yu Zhou
Chi-Ken Lu
Sibei Yang
Xiaoguang Han
Yizhou Yu
SSL
CLL
63
85
0
09 Sep 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
314
5,775
0
29 Apr 2021
TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation
TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation
Yundong Zhang
Huiye Liu
Qiang Hu
ViT
MedIm
206
891
0
16 Feb 2021
Improved Baselines with Momentum Contrastive Learning
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
267
3,369
0
09 Mar 2020
1