Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.11023
Cited By
PINQI: An End-to-End Physics-Informed Approach to Learned Quantitative MRI Reconstruction
19 June 2023
F. Zimmermann
C. Kolbitsch
Patrick Schuenke
A. Kofler
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PINQI: An End-to-End Physics-Informed Approach to Learned Quantitative MRI Reconstruction"
6 / 6 papers shown
Title
PINNing Cerebral Blood Flow: Analysis of Perfusion MRI in Infants using Physics-Informed Neural Networks
C. Galazis
Ching-En Chiu
Tomoki Arichi
Anil A. Bharath
Marta Varela
27
0
0
11 Oct 2024
PINNs for Medical Image Analysis: A Survey
C. Banerjee
Kien Nguyen
Olivier Salvado
Truyen Tran
Clinton Fookes
AI4CE
29
1
0
02 Aug 2024
NoSENSE: Learned unrolled cardiac MRI reconstruction without explicit sensitivity maps
F. Zimmermann
A. Kofler
32
1
0
27 Sep 2023
Cramér-Rao bound-informed training of neural networks for quantitative MRI
Xiaoxia Zhang
Quentin Duchemin
Kangning Liu
Sebastian Flassbeck
Cem Gultekin
C. Fernandez‐Granda
Jakob Assländer
26
19
0
22 Sep 2021
An End-To-End-Trainable Iterative Network Architecture for Accelerated Radial Multi-Coil 2D Cine MR Image Reconstruction
A. Kofler
Markus Haltmeier
T. Schaeffter
C. Kolbitsch
3DV
22
24
0
01 Feb 2021
Bag of Tricks for Image Classification with Convolutional Neural Networks
Tong He
Zhi-Li Zhang
Hang Zhang
Zhongyue Zhang
Junyuan Xie
Mu Li
221
1,399
0
04 Dec 2018
1