ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.12816
  4. Cited By
XAI-TRIS: Non-linear image benchmarks to quantify false positive
  post-hoc attribution of feature importance

XAI-TRIS: Non-linear image benchmarks to quantify false positive post-hoc attribution of feature importance

22 June 2023
Benedict Clark
Rick Wilming
Stefan Haufe
ArXivPDFHTML

Papers citing "XAI-TRIS: Non-linear image benchmarks to quantify false positive post-hoc attribution of feature importance"

2 / 2 papers shown
Title
Explaining the Impact of Training on Vision Models via Activation Clustering
Explaining the Impact of Training on Vision Models via Activation Clustering
Ahcène Boubekki
Samuel G. Fadel
Sebastian Mair
89
0
0
29 Nov 2024
Explainable AI needs formal notions of explanation correctness
Explainable AI needs formal notions of explanation correctness
Stefan Haufe
Rick Wilming
Benedict Clark
Rustam Zhumagambetov
Danny Panknin
Ahcène Boubekki
XAI
26
0
0
22 Sep 2024
1