ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.14789
  4. Cited By
Segmentation of Industrial Burner Flames: A Comparative Study from
  Traditional Image Processing to Machine and Deep Learning

Segmentation of Industrial Burner Flames: A Comparative Study from Traditional Image Processing to Machine and Deep Learning

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals), 2023
26 June 2023
S. Landgraf
Markus Hillemann
Moritz Aberle
Valentin Jung
Markus Ulrich
ArXiv (abs)PDFHTML

Papers citing "Segmentation of Industrial Burner Flames: A Comparative Study from Traditional Image Processing to Machine and Deep Learning"

2 / 2 papers shown
Title
Efficient Multi-task Uncertainties for Joint Semantic Segmentation and
  Monocular Depth Estimation
Efficient Multi-task Uncertainties for Joint Semantic Segmentation and Monocular Depth Estimation
S. Landgraf
Markus Hillemann
Theodor Kapler
Markus Ulrich
UQCV
213
13
0
16 Feb 2024
U-CE: Uncertainty-aware Cross-Entropy for Semantic Segmentation
U-CE: Uncertainty-aware Cross-Entropy for Semantic SegmentationISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals), 2023
S. Landgraf
Markus Hillemann
Kira Wursthorn
Markus Ulrich
SSegUQCV
140
15
0
19 Jul 2023
1