ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.15902
  4. Cited By
Individual and Structural Graph Information Bottlenecks for
  Out-of-Distribution Generalization

Individual and Structural Graph Information Bottlenecks for Out-of-Distribution Generalization

28 June 2023
Ling Yang
Jiayi Zheng
Heyuan Wang
Zhongyi Liu
Zhilin Huang
Shenda Hong
Wentao Zhang
Bin Cui
ArXivPDFHTML

Papers citing "Individual and Structural Graph Information Bottlenecks for Out-of-Distribution Generalization"

18 / 18 papers shown
Title
NodeNAS: Node-Specific Graph Neural Architecture Search for Out-of-Distribution Generalization
Qiyi Wang
Yinning Shao
Yunlong Ma
Min Liu
OOD
66
0
0
04 Mar 2025
Generative Risk Minimization for Out-of-Distribution Generalization on Graphs
Generative Risk Minimization for Out-of-Distribution Generalization on Graphs
Song Wang
Zhen Tan
Yaochen Zhu
Chuxu Zhang
Jundong Li
OOD
93
0
0
11 Feb 2025
Context-Aware Deep Learning for Multi Modal Depression Detection
Context-Aware Deep Learning for Multi Modal Depression Detection
Genevieve Lam
Huang Dongyan
Weisi Lin
26
0
0
26 Dec 2024
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Kexin Zhang
Shuhan Liu
Song Wang
Weili Shi
Chen Chen
Pan Li
Sheng R. Li
Jundong Li
Kaize Ding
OOD
45
2
0
25 Oct 2024
Improving Graph Out-of-distribution Generalization on Real-world Data
Improving Graph Out-of-distribution Generalization on Real-world Data
Can Xu
Yao Cheng
Jianxiang Yu
Haosen Wang
Jingsong Lv
Xiang Li
OOD
29
0
0
14 Jul 2024
How Interpretable Are Interpretable Graph Neural Networks?
How Interpretable Are Interpretable Graph Neural Networks?
Yongqiang Chen
Yatao Bian
Bo Han
James Cheng
42
4
0
12 Jun 2024
Safety in Graph Machine Learning: Threats and Safeguards
Safety in Graph Machine Learning: Threats and Safeguards
Song Wang
Yushun Dong
Binchi Zhang
Zihan Chen
Xingbo Fu
Yinhan He
Cong Shen
Chuxu Zhang
Nitesh V. Chawla
Jundong Li
37
7
0
17 May 2024
Disentangled Representation Learning with Transmitted Information
  Bottleneck
Disentangled Representation Learning with Transmitted Information Bottleneck
Zhuohang Dang
Minnan Luo
Chengyou Jia
Guangwen Dai
Jihong Wang
Xiao Chang
Jingdong Wang
Qinghua Zheng
22
4
0
03 Nov 2023
VQGraph: Rethinking Graph Representation Space for Bridging GNNs and
  MLPs
VQGraph: Rethinking Graph Representation Space for Bridging GNNs and MLPs
Ling Yang
Ye Tian
Minkai Xu
Zhongyi Liu
Shenda Hong
Wei Qu
Wentao Zhang
Bin Cui
Muhan Zhang
J. Leskovec
27
13
0
04 Aug 2023
Diffusion Models: A Comprehensive Survey of Methods and Applications
Diffusion Models: A Comprehensive Survey of Methods and Applications
Ling Yang
Zhilong Zhang
Yingxia Shao
Shenda Hong
Runsheng Xu
Yue Zhao
Wentao Zhang
Bin Cui
Ming-Hsuan Yang
DiffM
MedIm
224
1,296
0
02 Sep 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
89
222
0
30 Jan 2022
DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
  AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
  Annotations
DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise Annotations
Yuanfeng Ji
Lu Zhang
Jiaxiang Wu
Bing Wu
Long-Kai Huang
...
Ping Luo
Shuigeng Zhou
Junzhou Huang
Peilin Zhao
Yatao Bian
OOD
58
73
0
24 Jan 2022
Stable Prediction on Graphs with Agnostic Distribution Shift
Stable Prediction on Graphs with Agnostic Distribution Shift
Shengyu Zhang
Kun Kuang
J. Qiu
Jin Yu
Zhou Zhao
Hongxia Yang
Zhongfei Zhang
Fei Wu
OOD
34
8
0
08 Oct 2021
Graph Information Bottleneck
Graph Information Bottleneck
Tailin Wu
Hongyu Ren
Pan Li
J. Leskovec
AAML
88
224
0
24 Oct 2020
From Local Structures to Size Generalization in Graph Neural Networks
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
148
123
0
17 Oct 2020
Invariant Rationalization
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
179
201
0
22 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
898
0
02 Mar 2020
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
162
1,766
0
02 Mar 2017
1